The Antarctic shelf’s marine biodiversity has been greatly influenced by the climatic and glacial history of the region. Extreme temperature changes led to the extinction of some lineages, while others adapted and flourished. The amphipod genus Epimeria is an example of the latter, being particularly diverse in the Antarctic region. By reconstructing a time-calibrated phylogeny based on mitochondrial (COI) and nuclear (28S and H3) markers and including Epimeria species from all oceans, this study provides a temporal and geographical framework for the evolution of Antarctic Epimeria. The monophyly of this genus is not supported by Bayesian Inference, as Antarctic and non-Antarctic Epimeria form two distinct wellsupported clades, with Antarctic Epimeria being a sister clade to two stilipedid species. The monophyly of Antarctic Epimeria suggests that this clade evolved in isolation since its origin. While the precise timing of this origin remains unclear, it is inferred that the Antarctic lineage arose from a late Gondwanan ancestor and hence did not colonize the Antarctic region after the continent broke apart from the other fragments of Gondwanaland. The initial diversification of the clade occurred 38.04 Ma (95% HPD [48.46 Ma; 28.36 Ma]) in a cooling environment. Adaptation to cold waters, along with the extinction of cold-intolerant taxa and resulting ecological opportunities, likely led to the successful diversification of Epimeria on the Antarctic shelf. However, there was neither evidence of a rapid lineage diversification early in the clade’s history, nor of any shifts in diversification rates induced by glacial cycles. This suggests that a high turnover rate on the repeatedly scoured Antarctic shelf could have masked potential signals of diversification bursts.
Located in
Library
/
RBINS Staff Publications 2017
Eleven species of Glessulinae belonging to the genera Glessula Martens, 1860 (three species) and Rishetia Godwin-Austen, 1920 (eight species) are reported from Nepal, six of which are new to science and are described here, viz., G. tamakoshi Budha & Backeljau, sp. n., R. kathmandica Budha & Backeljau, sp. n., R. nagarjunensis Budha & Naggs, sp. n., R. rishikeshi Budha & Naggs, sp. n., R. subulata Budha & Naggs and R. tribhuvana Budha, sp. n. and two are new records for Nepal viz. G. cf. hebetata and R. cf. mastersi. The relation between the shell height-width ratio and the structure of the proximal part of the male reproductive organs in Glessulinae is explored. Illustrations and a key for the identification of the Nepalese Glessulinae are provided, including the first record of a spermatophore in Rishetia.
Located in
Library
/
RBINS Staff Publications 2017
Since the description of Isisfordia duncani, a number of new extinct species and revisions of previously described species have prompted a variety of contradicting phylogenetic hypotheses on the topology of Neosuchia. As a consequence, a consensus on the rooting of Eusuchia in relation to other neosuchian clades has not been reached and the origin of the group remains unsettled. Exemplifying this, Bernissartia fagesii, from the Early Cretaceous of Belgium, has long been considered a key taxon for understanding the origin of Eusuchia, but more recent hypotheses found support for a more basal position, as an ally to goniopholidids, paralligatorids or atoposaurids. Because many details of the anatomy of the type specimen are hidden by glue and the sediment adhering to the fossils, a number of characters are pending confirmation. Based on computed tomography data, we extract bones of the cranium and mandibles, describe new characters and re-evaluate anatomical details in the lectotype specimen. Our phylogenetic analysis confirms that B. fagesii is a derived neosuchian, unrelated to atoposaurids, goniopholidids and paralligatorids. We recover B. fagesii and Koumpiodontosuchus aprosdokiti in a basal position within Eusuchia, together with Susisuchidae, a group of gondwanan neosuchians containing Susisuchus and Isisfordia, which here form a polytomy with Hylaeochampsidae. The presence/absence of pterygoid-bound internal choanae cannot be used to fully resolve relationships at the neosuchian–eusuchian transition because of the variability of this character even at the familial level, as recently reported within susisuchids and bernissartiids. There is no doubt that true eusuchians were present in Laurasia as early as the Early Cretaceous, the hylaeochampsid Hylaeochampsa vectiana being the oldest (Barremian) undoubted representative. But whether the Eusuchia were also present in southern landmasses depends on solving the phylogenetic position of susisuchids and other less known gondwanan forms within or outside Eusuchia.
Located in
Library
/
RBINS Staff Publications 2020