Skip to content. | Skip to navigation

Personal tools

You are here: Home
1495 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference MORPHYLL: A database of fossil leaves and their morphological traits
Morphometric characters of fossil leaves such as size and shape are important and widely used sources for reconstructing palaeoenvironments. Various tools, including CLAMP or Leaf Margin Analysis, utilize leaf traits as input parameters for estimating palaeoclimate, mostly based on correlations between traits and climate parameters of extant plants. During the last few years, the scope of information extracted from the morphology of fossil leaves has been further expanded by including leaf economics, which describe correlations between functional leaf traits and ecological strategies. The amount and quality of available data are essential for a successful palaeoecological analysis utilizing leaf traits. Here, the database MORPHYLL is described. This database is devised to offer a web-based resource for fossil leaf trait data. For this purpose, fossil leaves from various collections were digitized and morphometric traits extracted from leaf outlines. Besides metadata such as accession number, repository, fossil site or taxonomic information (for identified specimens), MORPHYLL offers queries for several morphometric parameters and derived ecophysiological traits (e.g., leaf mass per area). Currently, the database contains data from about 6000 fossil leaves from sites in Central Europe, spanning almost the entire Paleogene and part of the early Neogene. The application potential of the database is demonstrated by conducting some exemplary analyses of leaf traits for the Paleocene, Eocene and Oligocene, with the results indicating changes of mean leaf traits through time. For example, the results show leaf mass per area to peak during the Eocene, which is in accordance with general climate development during the Paleogene.
Located in Library / RBINS Staff Publications 2018
Article Reference A subjective global checklist (submitted)of the Recent non-marine Ostracoda (Crustacea).
We present an updated, subjective list of the extant, non-marine ostracod genera and species of the world, with their distributions in the major zoogeographical regions, as well as a list of the genera in their present hierarchical taxonomic positions. The list includes all taxa described and taxonomic alterations made up to 1 July 2018. Taxonomic changes include 17 new combinations, 5 new names, 1 emended specific name and 11 new synonymies (1 tribe, 4 genera, 6 species). Taking into account the recognized synonymies, there are presently 2330 subjective species of non-marine ostracods in 270 genera. The most diverse family in non-marine habitats is the Cyprididae, comprising 43.2% of all species, followed by the Candonidae (29.0%), Entocytheridae (9.1%) and the Limnocytheridae (7.0%). An additional 13 families comprise the remaining 11.8% of described species. The Palaearctic zoogeographical region has the greatest number of described species (799), followed by the Afrotropical region with 453 species and the Nearctic region with 439 species. The Australasian and Neotropical regions each have 328 and 333 recorded species, respectively, while the Oriental region has 271. The vast majority of non-marine ostracods (89.8%) are endemic to one zoogeographical region, while only six species are found in six or more regions. We also present an additional list with ‘uncertain species’, which have neither been redescribed nor re-assessed since 1912, and which are excluded from the main list; a list of taxonomic changes presented in the present paper; a table with the number of species and % per family; and a table with numbers of new species described in the 20-year period between 1998 and 2017 per zoogeographical region. Two figures visualize the total number of species and endemic species per zoogeographical region, and the numbers of new species descriptions per decade for all families and the three largest families since 1770, respectively.
Located in Library / RBINS Staff Publications 2019
Article Reference Four new genera and five new species of “Heterocypris” from Western Australia (Crustacea, Ostracoda, Cyprinotinae).
Five new species in four new genera from Western Australia are described. All species have valve characters that are reminiscent of the genus Heterocypris Claus, 1892 and also have similar valve outlines, with highly arched valves. However, all species have a hemipenis morphology that is totally different from the typical form in Heterocypris. In Patcypris gen. nov. (with type species P. outback gen. et sp. nov.), the lateral lobe is large and shaped as a pickaxe, while the medial lobe is divided into two distal lobes. Trilocypris gen. nov. (with type species T. horwitzi gen. et sp. nov.) is characterised by a hemipenis that has three, instead of two, distal lobes. In Bilocypris gen. nov. (with type species B. fortescuensis gen. et sp. nov. and a second species, B. mandoraensis gen. et sp. nov.), the lateral lobe of the hemipenis is spatulate, rather than boot-shaped, and the medial lobe is bilobed. Billcypris gen. nov. (with type species B. davisae gen. et sp. nov.) has a large and sub-rectangular lateral lobe and a pointed medial lobe. We discuss the taxonomic value of the traditional and new morphological characters and speculate that the diversity of this cluster of genera and species may be greater than currently known.
Located in Library / RBINS Staff Publications 2019
Article Reference Unusual pectoral apparatus in a predatory dinosaur resolves avian wishbone homology
Located in Library / RBINS Staff Publications 2021
Article Reference A review of the geology and origin of CO2 in mineral water springs in east Belgium
Naturally CO2-rich mineral water springs (pouhons) in east Belgium occur in the context of the Rhenohercynian domain of the Variscan fold-and-thrust belt, mostly within the Cambro-Ordovician Stavelot-Venn Massif. The origin of the CO2 is still unclear, although different hypotheses exist. In this review study, we show pouhon waters are of the calcium bicarbonate type (~310 mg/l HCO3- on average), with notable Fe (~15 mg/l) and some Ca (~43 mg/l). Pouhon waters are primarily meteoric waters, as evidenced by H and O isotopic signature. The δ13Cof CO2 varies from -7.8 to +0.8‰ and contains up to ~15% He from magmatic origin, reflecting a combination of carbonate rocks and mantle as CO2 sources at depth. Dinantian and Middle Devonian carbonates at 2–6 km depth could be potential sources, with CO2 generated by dissolution. However, carbonates below the Stavelot-Venn Massif are only predicted by structural models that assume in-sequence thrusting, not by the more generally accepted out-of-sequence thrust models. The mantle CO2 might originate from degassing of the Eifel magmatic plume or an unknown shallower magmatic reservoir. Deep rooted faults are thought to act as preferential pathways. Overall low temperatures of pouhons (~10 °C) and short estimatedresidence times (up to 60 years) suggest magmatic CO2 is transported upwards to meet infiltrating groundwater at shallower depths, with partial to full isotopic exchange with carbonate rocks along its path, resulting in mixed magmatic-carbonate signature. Although the precise role and interaction of the involved subsurface processes remains debatable, this review study provides a baseline for future investigations.
Located in Library / RBINS Staff Publications 2020
Article Reference Reappraisal of the extinct seal “Phoca” vitulinoides from the Neogene of the North Sea Basin, with bearing on its geological age, phylogenetic affinities, and locomotion
Located in Library / RBINS Staff Publications 2017
Article Reference A Miocene pygmy right whale fossil from Australia
Located in Library / RBINS Staff Publications 2018
Article Reference A 1500-year record of North Atlantic storm flooding from lacustrine sediments, Shetland Islands (UK)
Severe storm flooding poses a major hazard to the coasts of north-western Europe. However, the long-term recurrence patterns of extreme coastal flooding and their governing factors are poorly understood. Therefore, high-resolution sedimentary records of past North Atlantic storm flooding are required. This multi-proxy study reconstructs storm-induced overwash processes from coastal lake sediments on the Shetland Islands using grain-size and geochemical data, and the re-analysis of historical data. The chronostratigraphy is based on Bayesian age–depth modelling using accelerator mass spectrometry 14C and 137Cs data. A high XRF-based Si/Ti ratio and the unimodal grain-size distribution link the sand layers to the beach and thus storm-induced overwash events. Periods with more frequent storm flooding occurred 980–1050, 1150–1300, 1450–1550, 1820–1900 and 1950–2000 ce, which is largely consistent with a positive North Atlantic Oscillation mode. The Little Ice Age (1400–1850 ce) shows a gap of major sand layers suggesting a southward shift of storm tracks and a seasonal variance with more storm floods in spring and autumn. Warmer phases shifted winter storm tracks towards the north-east Atlantic, indicating a possible trend for future storm-track changes and increased storm flooding in the northern North Sea region.
Located in Library / RBINS Staff Publications 2023
Article Reference No difference between critical and sprint swimming speeds for two galaxiid species
Researchers have used laboratory experiments to examine how fish might be affected by anthropogenic alterations and conclude how best to adjust fish passage and culvert remediation designs in response. A common way to document swimming performance for this purpose is measuring fish critical swimming speed (Ucrit). Nonetheless, the Ucrit protocol as defined by Brett [(1964) Journal of the Fisheries Research Board of Canada, 21, 1183–1226] may be inappropriate for studying swimming performance and determining how it relates to upstream migration in benthic fish, as they may not actively swim throughout the entire Ucrit test. An alternative method to estimate swimming performance is sprint swimming speed (Usprint), which is suggested to be a measure of the burst speed of fish rather than maximum sustained swimming speed. The authors conducted comparative swimming performance experiments to evaluate whether Usprint can be used to compare swimming performance of benthic species to that of pelagic, actively swimming species. They measured individual swimming speeds of īnanga (Galaxias maculatus), an actively swimming pelagic species, and banded kōkopu (Galaxias fasciatus), a fish that exhibits benthic station-holding behaviour, using both the Usprint and Ucrit test. Experiments revealed that no significant statistical difference between swimming speeds was estimated using the Ucrit and Usprint test protocols for both G. maculatus and G. fasciatus. The result of this study suggests that fish swimming speeds obtained using these two methods are comparable for the species used in this study. By using Usprint for benthic-associated fish and Ucrit for pelagic fish, we may be able to compare a broader range of species' swimming abilities for use in a fish passage context.
Located in Library / RBINS Staff Publications 2023
Article Reference Sedimentary evidence of the Late Holocene tsunami in the Shetland Islands (UK) at Loch Flugarth, northern Mainland
Tsunami deposits around the North Sea basin are needed to assess the long-term hazard of tsunamis. Here, we present sedimentary evidence of the youngest tsunami on the Shetland Islands from Loch Flugarth, a coastal lake on northern Mainland. Three gravity cores show organic-rich background sedimentation with many sub-centimetre-scale sand layers, reflecting recurring storm overwash and a sediment source limited to the active beach and uppermost subtidal zone. A basal 13-cm-thick sand layer, dated to 426–787 cal. a CE based on 14C, 137Cs and Bayesian age–depth modelling, was found in all cores. High-resolution grain-size analysis identified four normally graded or massive sublayers with inversely graded traction carpets at the base of two sublayers. A thin organic-rich ‘mud’ drape and a ‘mud’ cap cover the two uppermost sublayers, which also contain small rip-up clasts. Grain-size distributions show a difference between the basal sand layer and the coarser and better sorted storm layers above. Multivariate statistical analysis of X-ray fluorescence core scanning data also distinguishes both sand units: Zr, Fe and Ti dominate the thick basal sand, while the thin storm layers are high in K and Si. Enriched Zr and Ti in the basal sand layer, in combination with increased magnetic susceptibility, may be related to higher heavy mineral content reflecting an additional marine sediment source below the storm-wave base that is activated by a tsunami. Based on reinterpretation of chronological data from two different published sites and the chronostratigraphy of the present study, the tsunami seems to date to c. 1400 cal. a BP. Although the source of the tsunami remains unclear, the lack of evidence for this event outside of the Shetland Islands suggests that it had a local source and was smaller than the older Storegga tsunami (8.15 cal. ka BP), which affected most of the North Sea basin.
Located in Library / RBINS Staff Publications 2023