Primary production (PP) is highly sensitive to changes in the ecosystem and can be used as an early warning indicator for disturbance in the marine environment. Historic indicators of good environmental status of the north-east (NE) Atlantic and north-west (NW) European Seas suggested that daily PP should not exceed 2–3 g C m−2 d−1 during phytoplankton blooms and that annual rates should be 300 g C m−2 yr−1. We use 21 years of Copernicus Marine Service (CMEMS) Ocean Colour data from September 1997 to December 2018 to assess areas in the NE Atlantic with similar peak, climatology, phenology and annual PP values. Daily and annual thresholds of the 90th percentile (P90) of PP are defined for these areas and PP values above these thresholds indicate disturbances, both natural and anthropogenic, in the marine environment. Two case studies are used to test the validity and accuracy of these thresholds. The first is the eruption of the volcano Eyjafjallajökull, which deposited large volumes of volcanic dust (and therefore iron) into the NE Atlantic during April and May 2010. A clear signature in both PP and chlorophyll-a (Chl a) was evident from 28th April to 6th May and from 18th to 27th May 2010, when PP exceeded the PP P90 threshold for the region, which was comparatively more sensitive than Chl a P90 as an indicator of this disturbance. The second case study was for the riverine input of total nitrogen and phosphorus, along the Wadden Sea coast in the North Sea. During years when total nitrogen and phosphorus were above the climatology maximum, there was a lag signature in both PP and Chl a when PP exceeded the PP P90 threshold defined for the study area which was slightly more sensitive than Chl a P90. This technique represents an accurate means of determining disturbances in the environment both in the coastal and offshore waters in the NE Atlantic using remotely sensed ocean colour data.
Located in
Library
/
RBINS Staff Publications 2022
Introduction: Efforts to collect ecological data have intensified over the last decade. This is especially true for freshwater habitats, which are among the most impacted by human activity and yet lagging behind in terms of data availability. Now, to support conservation programmes and management decisions, these data need to be analyzed and interpreted; a process that can be complex and time consuming. The South African Biodiversity Data Pipeline for Wetlands and Waterbirds (BIRDIE) aims to help fast and efficient information uptake, bridging the gap between raw ecological datasets and the information final users need. <br /><br /> Methods: BIRDIE is a full data pipeline that takes up raw data, and estimates indicators related to waterbird populations, while keeping track of their associated uncertainty. At present, we focus on the assessment of species abundance and distribution in South Africa using two citizen-science bird monitoring datasets, namely: the African Bird Atlas Project and the Coordinated Waterbird Counts. These data are analyzed with occupancy and state-space models, respectively. In addition, a suite of environmental layers help contextualize waterbird population indicators, and link these to the ecological condition of the supporting wetlands. Both data and estimated indicators are accessible to end users through an online portal and web services. <br /><br /> Results and discussion: We have designed a modular system that includes tasks, such as: data cleaning, statistical analysis, diagnostics, and computation of indicators. Envisioned users of BIRDIE include government officials, conservation managers, researchers and the general public, all of whom have been engaged throughout the project. Acknowledging that conservation programmes run at multiple spatial and temporal scales, we have developed a granular framework in which indicators are estimated at small scales, and then these are aggregated to compute similar indicators at broader scales. Thus, the online portal is designed to provide spatial and temporal visualization of the indicators using maps, time series and pre-compiled reports for species, sites and conservation programmes. In the future, we aim to expand the geographical coverage of the pipeline to other African countries, and develop more indicators specific to the ecological structure and function of wetlands.
Located in
Library
/
RBINS Staff Publications 2023