Skip to content. | Skip to navigation

Personal tools

You are here: Home
2350 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Inproceedings Reference Canopy laser scanning to study the complex architecture of large old trees
Canopy laser scanning to study the complex architecture of large old trees Barbara D'hont1 , Professor Kim Calders1 , Professor Alexandre Antonelli6 , Dr. Thomas Berg7 , Dr. Karun Dayal1 , Dr. Leonard Hambrecht5 , Dr. Maurice Leponce2,3, Prof. Arko Lucieer5 , Olivier Pascal4 , Professor Pasi Raumonen8, Professor Hans Verbeeck1 1Q-ForestLab, Department of Environment, Ghent University, Ghent, Belgium, 2Royal Belgian Institute of Natural Sciences, Brussels, Belgium, 3Université Libre de Bruxelles, Brussels, Belgium, 4Fonds de Dotation Biotope Pour La Nature, France, 5School of Geography, Planning, and Spatial Sciences, University of Tasmania, , Australia, 6Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom, 7ARAÇÁ Project, Nova Friburgo, Rio de Janeiro, Brazil, 8Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland Large trees are keystone structures providing multiple ecosystem functions in forests all around the world: they disproportionately contribute to forest biomass and biodiversity. Large trees can have an extremely complex structure, housing many epiphytes on their stem and branches. High point-density 3D point clouds, in which leaves and epiphytes in the tree can be distinguished, are useful to make the link between the distribution of organisms on the tree, the tree architecture and its microclimate. In addition, a comprehensive branching model can improve above ground biomass (AGB) estimates. Highly detailed, complete point clouds of large trees are, however, exceptionally difficult to derive. With terrestrial laser scanning, the state-of-the-art method to capture 3D tree structure, the plant material blocks the view of (or, occludes) the top part of the dense crown. Drone or airborne laser scanning data on the other hand, lacks detail in the subcanopy. Combining these two methods minimises occlusion; however, increased distance from the tree to the scanner still leads to a relatively low resolution of the canopy point clouds. To improve the level of precision of the tree point clouds, we introduce a new concept, called canopy laser scanning (CLS). With CLS, a laser scanner is operated statically inside the tree canopy, reducing the distance between the area of interest and the instrument. We lifted a high-end laser scanner (RIEGL vz-400(i)) inside the canopy of six large emergent trees. Four of these trees are located in different types of tropical rainforests in Colombia, Brazil and Peru. They are part of biodiversity programs in which organisms and their spatial distributions are studied (Life On Trees, Araçá). The two other trees are famous giants located in the wet temperate eucalypt forests of southern Tasmania. We will present the practical aspects of CLS, evaluate the extra value of using canopy scans, looking at occlusion and point cloud precision, estimate epiphyte cover and AGB. We demonstrate that canopy laser scanning opens up new opportunities in sciences in which multi-disciplinary teams perform in depth research on large individual trees.
Located in Library / RBINS Staff Publications 2023
Inproceedings Reference Biodiversity research and monitoring related capacities in Kisangani (DRC)
Located in Library / RBINS Staff Publications 2017
Inproceedings Reference Towards less invasive methods to inventory and monitor wildlife in the Congo Basin
Located in Library / RBINS Staff Publications 2017
Inproceedings Reference Ammonoids and anoxia from the Belgian Frasnian: the Carrière de Lompret section
Located in Library / RBINS Staff Publications 2018
Inproceedings Reference A double whammy for dinosaurs and ammonites: fake news or the real deal
Located in Library / RBINS Staff Publications 2018
Inproceedings Reference Speciation genomics of cichlids (Ophthalmotilapia) from Lake Tanganyika
Located in Library / RBINS Staff Publications 2016
Inproceedings Reference Pinpointing behavioral responses during mating using differential gene expression in the female brain of cichlid fish
Located in Library / RBINS Staff Publications 2016
Inproceedings Reference Fouille préventive sur la colline de Chèvremont (Chaudfontaine). Premiers jalons d’une redé- couverte de l’abbaye fortifiée du Premier Moyen Âge
Located in Library / RBINS Staff Publications 2024
Inproceedings Reference Large old tropical trees as pools of biodiversity: the Life On Trees program
The aim of the Life On Trees (LOT) program is to generate baseline knowledge about the number of eukaryotic species a single large aged tropical tree can host and to understand how these communities of organisms are assembled. The program is conducted in the Amazon and Andes biodiversity hotspots. Our first project, LOT-Amazon 2022, was performed on a spectacular Dussia tree (Fabaceae), which was 50 m high and 45 m wide. The sampling was carried out by professional climbers, guided by experts of the different eukaryotic groups studied (plants, fungi, animals, protists). To better understand the contribution of different tree components (bark, leaves, fruits, flowers, living and dead wood) to overall tree biodiversity, we assigned observations into communities based on height zone or microhabitat and will examine similarities and nestedness in the composition of these communities. The first results show that a single tree can host a tremendous diversity (e.g., 42 orchids, 28 ferns, and more than 200 bryophytes, 180 lichen species identified, which are world records considering the 400m elevation). This confirms that large old tropical trees are important pools of biodiversity probably in relation with the variety of local microhabitats and tree age. Funding: Fonds de Dotation Biotope pour la Nature Web and/or Twitter account: www.lifeontrees.org
Located in Library / RBINS Staff Publications 2023
Article Reference Frasnian cephalopods from the newly discovered Carrière de Lompret section, Lompret, Belgium
Located in Library / RBINS Staff Publications 2018