-
Beetles (Coleoptera) of Peru: A survey of the Families. Curculionidae: Platypodinae
-
Located in
Library
/
RBINS collections by external author(s)
-
Belgian fossil shells as fortune tellers? Unique climate archives yet hardly tapped into
-
Shells are powerful climate archives - they add growth increments on timescales as short as sub-daily, and often live for decades, some even more than 100 years. With the aid of isotope and trace-elemental geochemistry, the effects of climate change on temperature, seasonality and extreme weather can be read from them. Belgium is one of the few countries blessed with extensive records of exquisitely preserved fossil shells dating to the Pliocene, a geologic period dating from 5.3 to 2.6 million year ago. Critically, the Pliocene is the youngest geologic time during which CO2 levels were >400 ppm and mean annual temperatures comparable to those to be reached by the end of this century, following Shared Socioeconomic Pathways (SSP) 2-4.5 of the IPCC. It therefore presents an ideal near-future analogue. Rich collections of well-preserved Belgian Pliocene shells are in the Royal Belgian Institute of Natural Sciences (RBINS), and more material is collected from temporary outcrops like building sites in and around Antwerp with the aid of citizen-scientists. In recent years, RBINS collaborated with national (VUB, KULeuven) and international (VU Amsterdam, Naturalis, UDerby) researchers to start tapping into these exquisite climate archives, unraveling previously unknown details on Belgian past climate, predicting amplified seasonality in Europe in a warmer world, and investigating the potential of fossil shells to document heat waves and storms. The poster will highlight some of this recent collaborative work, and, why the RBINS, through its collections, fieldwork and expertise can play a pivotal role in climate research in Belgium.
Located in
Library
/
RBINS Staff Publications 2024
-
Belgisch marmer
-
Located in
Library
/
RBINS Staff Publications
-
Belgium.
-
Located in
Library
/
RBINS Staff Publications
-
Belgium. In : The Northwest European Tertiary Basin, I.G.C.P. Project 124.
-
Located in
Library
/
RBINS Staff Publications
-
Belgocaranx luypaertsi gen. and sp. nov., a new skeleton-based Carangid Fish from the Boom Clay (Rupelian, Early Oligocene) at Kallo (N. Belgium).
-
Located in
Library
/
RBINS Staff Publications
-
Binkhorstiidae, a new family of crabs (Decapoda, Brachyura, Retroplumoidea) from the upper Cretaceous of the Netherlands and Belgium.
-
In addition to the type species, Binkhorstia ubaghsii, which is fairly common in the upper part of the Nekum Member (Maastricht Formation) in the wider vicinity of Maastricht (the Netherlands) and Binkhorstia euglypha, which appears to be restricted to the overlying Meerssen Member of the same formation (uppermost Maastrichtian), a third member, B. desaegheri nov. sp., is recorded from the upper middle Santonian of the Campine area in north-east Belgium. The history of Binkhorstia is convoluted, serving as a prime example of how attempts to unravel the higher-level taxonomic position of late Mesozoic crabs may prove difficult. Over time, the genus has been referred to various families or subfamilies, either podotreme or putative eubrachyuran; here the new family Binkhorstiidae is placed in the superfamily Retroplumoidea. Binkhorstiids appear to have been a relatively short-lived endemic group that fell victim to Cretaceous‒Paleogene (K/Pg) boundary perturbations.
Located in
Library
/
RBINS Staff Publications 2024
-
Biodiversity of tiger beetles from Angola with the description of a new species of the genuw Neochila Basilewsky, 1953 (Coleoptera: Cicindelidae)
-
Located in
Library
/
RBINS collections by external author(s)
-
Biodiversity, Biogeography and Nature Conservation in Wallacea and New Guinea. Volume IV
-
Located in
Library
/
RBINS Staff Publications 2021
-
Bioerosional marks in the shells of two extinct sea turtle taxa from the Eocene of Belgium
-
Bioerosional marks are frequently recognized as indicators of the dynamic interactions between the organisms and their surrounding environments. In the fossil record, these structures are frequently manifest in the skeletal remains of vertebrates, being commonly associated to predation activity, scavenging, or post-mortem degradation processes. In the case of the turtles, their shells offer a distinctive substrate, exposed for the development of bioerosional processes throughout the organism life, unlike other vertebrate osseous structures. These bioerosions can indicate the type of habitat in which the turtles live, their behavioral patterns, and even their state of health. Sea turtles, as other marine vertebrates, have been extensively studied in the realms of the biology, evolution, and conservation. However, relatively scarce information is available regarding the pathologies and infectious diseases affecting their shells, especially when extinct taxa are analyzed. The aim of this study is to analyze the diverse types of bioerosional marks on the shells of two sea turtle individuals, attributable to taxa, from the Lutetian (middle Eocene) of Belgium. One of them corresponds to the shell of the holotype of Eochelone brabantica (IRSNB R 0001). Its carapace exhibits multiple erosive anomalies on several costal plates. The second specimen is a carapace of Puppigerus camperi (IRSNB R 0004). It displays different typologies of shell deviations, also of erosive character. The analyses of these specimens have been performed through both the detailed macroscopic examination and the study of the cross-sectional images provided by CT scanning in the case of Eochelone brabantica, and a 3D model obtained through a surface scanner for Puppigerus camperi. As a result, insights into the shell modifications of these two turtle individuals induced by various external agents have been provided, enhancing our understanding of the physical stressors affecting these organisms in ancient marine environments and the organisms responsible for these changes.
Located in
Library
/
RBINS Staff Publications 2025