Skip to content. | Skip to navigation

Personal tools

You are here: Home
1547 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Redescription of the Snail Mite Riccardoella reaumuri (Acariformes: Prostigmata: Ereynetidae)
Located in Library / RBINS collections by external author(s)
Inproceedings Reference Solving the missing pieces of the gharial puzzle: new phylogenetic framework combining morphological, molecular, and biostratigraphic data to unravel the evolution of long-snouted crocodylians.
Among the extant crocodylians are two species with long, narrow snouts: Gavialis gangeticus,the Indian gharial and Tomistoma schlegelii, the "false" gharial. These enigmatic species are considered by the IUCN red list as critically endangered and vulnerable, respectively. However, despite this, knowledge of their evolutionary history is lacking. Extensive debate has surrounded the gharials for over four decades and remains unsolved today: the so-called gharial problem. Whereas molecular studies consistently indicate that these two species are sister taxa, morphological studies of both living and fossil taxa find that they belong to distantly related lineages. Moreover, molecular clock estimates indicate a shallow divergence time of 18-31 million years ago. This entirely contradicts the rich fossil record of gharials: in contrast to the modern gharials, these fossil taxa comprise a huge diversity and suggest that tomistomines and gavialines have diverged from each other at least 70 million years ago, prior to the K/Pg mass extinction. European museums, and especially the Royal Belgian Institute of Natural Sciences, Brussels, comprise rich collections containing many of the oldest fossil gavialoids, crucial to solving the gharial problem. Nevertheless, few modern morphological studies have been performed on these specimens, and their stratigraphic age is often poorly constrained. Therefore, in a new project we will use a multidisciplinary approach to study these specimens, combining morphological study and biostratigraphic analyses using dinoflagellate cysts. Moreover, we will revise the classical methods used by paleontologists to study fossil crocodylians, devising a new phylogenetic framework that makes use of both morphological, molecular, and biostratigraphic data. Here, we will present some of the first preliminary results of this project.
Located in Library / RBINS Staff Publications 2023
Article Reference Two new species of Clytini Mulsant, 1839 from Tibet (Coleoptera Cerambycidae Cerambycinae)
Located in Library / RBINS collections by external author(s)
Article Reference Présence du frelon asiatique Vespa velutina Lepeletier, 1836 en région de Bruxelles-Capitale, bilan de sa progression en Belgique et sa découverte au Grand-Duché de Luxembourg (Hymenoptera, Vespidae)
Located in Library / RBINS Staff Publications 2020
Article Reference Under pressure: the relationship between cranial shape and burrowing force in caecilians (Gymnophiona)
Caecilians are elongate, limbless and annulated amphibians that, with the exception of one aquatic family, all have an at least partly fossorial lifestyle. It has been suggested that caecilian evolution resulted in sturdy and compact skulls with fused bones and tight sutures, as an adaptation to their head-first burrowing habits. However, although their cranial osteology is well described, relationships between form and function remain poorly understood. In the present study, we explored the relationship between cranial shape and in vivo burrowing forces. Using micro-computed tomography (µCT) data, we performed 3D geometric morphometrics to explore whether cranial and mandibular shapes reflected patterns that might be associated with maximal push forces. The results highlight important differences in maximal push forces, with the aquatic Typhlonectes producing a lower force for a given size compared with other species. Despite substantial differences in head morphology across species, no relationship between overall skull shape and push force could be detected. Although a strong phylogenetic signal may partly obscure the results, our conclusions confirm previous studies using biomechanical models and suggest that differences in the degree of fossoriality do not appear to be driving the evolution of head shape.
Located in Library / RBINS Staff Publications 2021
Inproceedings Reference Geochemistry of nummulites as proxy for Eocene climate change in the Southern North Sea Basin
Located in Library / RBINS Staff Publications 2019
Article Reference Mitochondrial phylogeography of a widespread sub-saharan murid rodent Aethomyschrysophilus; the role of geographic barriers and paleoclimate in Zambezian region
Located in Library / RBINS Staff Publications 2017
Article Reference Systematics, taxonomy and faunistics of the Apomecynini of the Oriental and Australian Region (Coleoptera: Cerambycidae: Lamiinae) part 7
Located in Library / RBINS collections by external author(s)
Article Reference Review of the genus Eburodacrys White, 1853 (Coleoptera: Cerambycidae: Cerambycinae)
Located in Library / RBINS collections by external author(s)
Article Reference Taxonomie and nomenclatorial revision within the Neotropical genera of the subtribe Odontocheilina. W. Horn in a new sense - 19. Odontocheila microptera nom. nov., a new replacement name for O. euryoides W. Horn, 1922, and lectotype designation of O. niti
Located in Library / RBINS collections by external author(s)