While geological models traditionally focus on the natural status of the underground, the shallow subsurface has been significantly altered by human activities over centuries. Particularly in urban contexts, ground has been raised, reworked, filled-in or disturbed in other ways. The rationale behind these alterations is as varied as the characteristics of the associated anthropogenic deposits: large-scale structures such as residential and industrial areas built on extensive sheets of filling materials or reclaimed lands are intertwined with smaller-scale features related, for example, to road and railway infrastructures, dikes or landfills. Their composition is equally diverse, ranging from displaced natural materials, such as crushed rocks, gravel, sand or clay, to artificial substances like recycled steel slags, concrete or rubble, or mixtures of these. Gaining knowledge on the presence and characteristics of such deposits is highly relevant, as their physical and chemical behaviour may differ significantly from those of natural deposits. The significance of anthropogenic deposits is increasingly recognized in urban geology. Resolving the geometry and properties of the urban shallow subsurface is essential for anticipating associated risks, for example dealing with pollution, ground stability or distorted water infiltration patterns. Anthropogenic deposits are, however, often scantily archived in permit documentation or represented on (geological) maps. Within the GSEU (Geological Service for Europe) project, the GSB is contributing to the task to develop a common, international vocabulary to describe all aspects of anthropogenic deposits, allowing standardised representation and characterisation in geological models. In parallel, VITO is developing shallow subsurface urban models for the Flemish government (VPO) within the VLAKO-framework, such as the published model of the Antwerp harbour and city. As the anthropogene inherently is part of these models, we are always aiming to better incorporate these deposits into the models. However, modelling the anthropogene presents unique challenges due to its high-resolution variability, scarcity of input data, and dynamic nature. It requires an approach that differs radically from traditional geological modelling techniques, in which depositional concepts related to the sedimentational or structural environment can be incorporated. In this presentation we will outline how we integrate various 1D, 2D and 3D sources to identify and characterize anthropogenic deposits and incorporate these insights in a 3D geological model of the anthropogene. This methodology is applied to the urban periphery of Brussels, where a new 3D geological model is being developed to support infrastructure projects and urban planning with special focus on the ring road (R0) of Brussels. Secondly, we will evaluate current lithological standards, vocabulary and stratigraphic approaches to characterize anthropogenic deposits. We will discuss their applicability in Flanders with practical examples from the periphery of Brussels. Ultimately, improving the representation of the anthropogene in geological models will significantly enhance their utility for urban planning, environmental management, and the sustainable utilization of the subsurface in urban areas.
Located in
Library
/
RBINS Staff Publications 2024
Numerous naturally CO2-rich mineral water springs, locally called ‘pouhons’, occur in southeast Belgium. These are oversaturated in CO2 (up to 4g/L) and have attracted economic, touristic and scientific interest for centuries. Water sources occur within Palaeozoic rocks of the Rhenohercynian deformation zone, a fold-and-thrust belt at the north of the Variscan orogeny in central Europe. Many occurrences are concentrated in the Cambro-Ordivician Stavelot-Venn massif. A widely accepted model, supported by H-O isotopic signatures, is that sources are primarily fed by meteoric water, which infiltrates through Quaternary sediments, then reaching Lower Palaeozoic rocks to meet the mineral and CO2 source at unknown depth. Different ideas for the origin of CO2 are grouped in two main hypotheses: a) generation by dissolution of carbonate rocks and/or nodules, and b) volcanic degassing related to the neighbouring Eifel area in Germany. These well-known interpretations are mostly based on geochemical studies that are dispersed and poorly accessible. These have now been gathered in the light of new sampling campaigns, allowing to revisit and compare the views of earlier authors. We also for the first time include the geotectonic setting of the region. Carbonate rocks in the region are represented by Lower Carboniferous and Middle Devonian limestones. Depending on the assumed structural evolution for this foreland fold-an-thrust belt, these may occur at >2 km depth below the Stavelot-Venn massif. Carbonate nodules are present in other formations, but their limited volume is unlikely to originate high and long-lived quantities of CO2. Springs enriched in CO2 are also common in the volcanic Eifel area, with presence of mantle CO2 well established. The supposed extension of the Eifel plume would allow for a magmatic CO2 source below the Stavelot-Venn massif from degassing of the plume (>50 km deep), or of an unknown shallower magmatic reservoir. Available stable and noble isotopes point to a mixed carbonate-magmatic origin. If considering the presence of limestones at depth, meteoric water should infiltrate at least 2 km. Known deep-rooted faults are thought to act as preferential groundwater pathways. However, such deep circulation is incompatible with the low temperatures of springs (~10oC), unless the ascent is slow enough to fully dissipate heat prior to resurfacing. Another possibility is that meteoric water does not infiltrate as deep, with CO2 being transported upwards to meet groundwaters at shallower depths. The presence of CO2 surface leaks, locally called ‘mofettes’, could be evidence of such relatively shallow availability of CO2. The evaluation of existing hypotheses highlights complex subsurface processes that involve water infiltration, CO2 assimilation and water resurfacing in southeast Belgium (Figure 1). As such, this review is an important guide for the newly launched sampling campaigns. Acknowledgements This work is part of two research projects: GeoConnect³d-GeoERA that has received funding by the European Union’s Horizon 2020 research and innovation programme under grant agreement number 731166, and ROSEAU project, as part of the Walloon program «Doctorat en Entreprise», co-funded by the SPW Région Wallonne of Belgium and the company Bru-Chevron S.A. (Spadel group), under grant number 7984. References Barros, R., Defourny, A., Collignon, A., Jobé, P., Dassargues, A., Piessens, K. & Welkenhuysen, K., 2021. A review of the geology and origin of CO2 in mineral water springs in east Belgium. Geologica Belgica, 24 (1-2), p.17-31. https://doi.org/10.20341/gb.2020.023
Located in
Library
/
RBINS Staff Publications 2021
Thoracosaurs are a polyphyletic group of Cretaceous–Paleogene longisrostrine crocodylians from Europe and North America. Traditionally perceived as gavialoids, phylogenetically closer to Gavialinae than to Tomistominae, they play a key role in the gharial problem: their old age and seemingly close relationship to Gavialinae is inconsistent with molecular clock estimates indicating a far younger origin of Gavialoidea. Moreover, the phylogenetic position of thoracosaurs is debated, as recent studies suggested thoracosaurs are non-crocodylian eusuchians instead. Here we describe thoracosaur material from Mont-Aimé, France, rediscovered in the collections of the Musée d’Histoire Naturelle de Lille. The Mont-Aimé is famous for its richness in fossil vertebrates, among which the longirostrine species Thoracosaurus isorhynchus (formerly T. macrorhynchus). Confusion about the age of the vertebrate layers has recently been solved, indicating that they are Maastrichtian in age instead of Danian. The new material most likely belongs to T. isorhynchus based on a flexure in the ectopterygoid–pterygoid suture, a distinctive character found in adults of this taxon. Our study reveals new characters not visible on previously known material. An example is the short posterior non-dentigerous process of the maxilla, a character shared with early Paleogene longirostrines and tomistomines but not with gavialines. Furthermore, microCT data of the skull reveal for the first time endocranial characters of this taxon, such as the presence of an internal recess in the parietal. Together with redescribed T. isorhynchus material from the Muséum d’Histoire Naturelle, Paris, this leads to an updated phylogenetic position of this taxon.
Located in
Library
/
RBINS Staff Publications 2023