Our knowledge of the conservation status of reptiles, the most diverse class of terrestrial vertebrates, has improved dramatically over the past decade, but still lags behind that of the other tetrapod groups. Here, we conduct the first comprehensive evaluation (~92% of the world’s ~1714 described species) of the conservation status of skinks (Scincidae), a speciose reptile family with a worldwide distribution. Using International Union for Conservation of Nature (IUCN) criteria, we report that ~20% of species are threatened with extinction, and nine species are Extinct or Extinct in the Wild. The highest levels of threat are evident in Madagascar and the Neotropics, and in the subfamilies Mabuyinae, Eugongylinae and Scincinae. The vast majority of threatened skink species were listed based primarily on their small geographic ranges (Criterion B, 83%; Criterion D2, 13%). Although the population trend of 42% of species was stable, 14% have declining populations. The key threats to skinks are habitat loss due to agriculture, invasive species, and biological resource use (e.g., hunting, timber harvesting). The distributions of 61% of species do not overlap with protected areas. Despite our improved knowledge of the conservation status of the world’s skinks, 8% of species remain to be assessed, and 14% are listed as Data Deficient. The conservation status of almost a quarter of the world’s skink species thus remains unknown. We use our updated knowledge of the conservation status of the group to develop and outline the priorities for the conservation assessment and management of the World's skink species.
Located in
Library
/
RBINS Staff Publications 2021
Functional traits are commonly used in predictive models that link environmental drivers and community structure to ecosystem functioning. A prerequisite is to identify robust sets of continuous axes of trait variation, and to understand the ecological and evolutionary constraints that result in the functional trait space occupied by interacting species. Despite their diversity and role in ecosystem functioning, little is known of the constraints on the functional trait space of invertebrate biotas of entire biogeographic regions. We examined the ecological strategies and constraints underlying the realized trait space of aquatic invertebrates, using data on 12 functional traits of 852 taxa collected in tank bromeliads from Mexico to Argentina. Principal Component Analysis was used to reduce trait dimensionality to significant axes of trait variation, and the proportion of potential trait space that is actually occupied by all taxa was compared to null model expectations. Permutational Analyses of Variance were used to test whether trait combinations were clade‐dependent. The major axes of trait variation represented life‐history strategies optimizing resource use and antipredator adaptations. There was evidence for trophic, habitat, defence and life‐history niche axes. Bromeliad invertebrates only occupied 16%–23% of the potential space within these dimensions, due to greater concentrations than predicted under uniform or normal distributions. Thus, despite high taxonomic diversity, invertebrates only utilized a small number of successful ecological strategies. Empty areas in trait space represented gaps between major phyla that arose from biological innovations, and trait combinations that are unviable in the bromeliad ecosystem. Only a few phylogenetically distant genera were neighbouring in trait space. Trait combinations aggregated taxa by family and then by order, suggesting that niche conservatism was a widespread mechanism in the diversification of ecological strategies.
Located in
Library
/
RBINS Staff Publications 2018