-
Competition between kaolinite flocculation and stabilization in divalent cation solutions dosed with anionic polyacrylamides
-
Divalent cations have been reported to develop bridges between anionic polyelectrolytes and negatively-charged colloidal particles, thereby enhancing particle flocculation. However, results from this study of kaolinite suspensions dosed with various anionic polyacrylamides (PAMs) reveal that Ca2+ and Mg2+ can lead to colloid stabilization under some conditions. To explain the opposite but coexisting processes of flocculation and stabilization with divalent cations, a conceptual flocculation model with (1) particle-binding divalent cationic bridges between PAM molecules and kaolinite particles and (2) polymer-binding divalent cationic bridges between PAM molecules is proposed. The particle-binding bridges enhanced flocculation and aggregated kaolinite particles in large, easily-settleable flocs whereas the polymer-binding bridges increased steric stabilization by developing polymer layers covering the kaolinite surface. Both the particle-binding and polymer-binding divalent cationic bridges coexist in anionic PAM- and kaolinite-containing suspensions and thus induce the counteracting processes of particle flocculation and stabilization. Therefore, anionic polyelectrolytes in divalent cation-enriched aqueous solutions can sometimes lead to the stabilization of colloidal particles due to the polymer-binding divalent cationic bridges.
Located in
Library
/
RBINS Staff Publications
-
Compétition entre trois espèces de termites arboricoles dans les cocoteraies néo-guinéennes, en relation avec leurs stratégies de reproduction et de défense.
-
Located in
Library
/
No RBINS Staff publications
-
Complément à l’étude du sous-genre Chelorhinella De Palma & Franz, 2010 (Coleoptera, Cetoniidae, Cetoniinae, Goliathini)
-
Located in
Library
/
RBINS collections by external author(s)
-
Complementarity effects drive positive diversity effects on biomass production in experimental benthic diatom biofilms
-
P1. Positive effects of species diversity on ecosystem functioning have often been demonstrated in 'macrobial' communities. This relation and the responsible mechanisms are far less clear for microbial communities. Most experimental studies on microorganisms have used randomly assembled communities that do not resemble natural communities. It is therefore difficult to predict the consequences of realistic, non-random diversity loss. 2. In this study, we used naturally co-occurring diatom species from intertidal mudflats to assemble communities with realistically decreasing diversity and analysed the effect of non-random species loss on biomass production. 3. Our results demonstrate a highly positive biodiversity effect on production, with mixtures outperforming the most productive component species in more than half of the combinations. These strong positive diversity effects could largely be attributed to positive complementarity effects (including both niche complementarity and facilitation), despite the occurrence of negative selection effects which partly counteracted the positive complementarity effects at higher diversities. 4. Facilitative interactions were, at least in part, responsible for the higher biomass production. For one of the species, Cylindrotheca closterium, we show its ability to significantly increase its biomass production in response to substances leaked into the culture medium by other diatom species. In these conditions, the species drastically reduced its pigment concentration, which is typical for mixotrophic growth. 5. Synthesis. We show that both species richness and identity have strong effects on the biomass production of benthic diatom biofilms and that transgressive overyielding is common in these communities. In addition, we show mechanistic evidence for facilitation which is partly responsible for enhanced production. Understanding the mechanisms by which diversity enhances the performance of ecosystems is crucial for predicting the consequences of species loss for ecosystem functioning.
Located in
Library
/
RBINS Staff Publications
-
Complementary contribution to the study of the entomological fauna of Borneo island with the description of a new subspecies in the genus Aegosoma Audinet-Serville, 1832 (Coleoptera, Cerambycidae, Prioninae)
-
Located in
Library
/
RBINS Staff Publications 2021
-
Compléments à l’étude des otolithes de poissons rupeliens d’Aquitaine méridionale (Sud ouest de la France).
-
Located in
Library
/
RBINS Staff Publications
-
Complete Coding Sequences of One H9 and Three H7 Low-Pathogenic Influenza Viruses Circulating in Wild Birds in Belgium, 2009 to 2012.
-
Located in
Library
/
No RBINS Staff publications
-
Complete lineage segregation in ostracods (Crustacea, Ostracoda) from Lake Tanganyika, Africa
-
Located in
Library
/
RBINS Staff Publications
-
Complete Mitochondrial Genomes of Ancient Canids Suggest a European Origin of Domestic Dogs
-
The geographic and temporal origins of the domestic dog remain controversial, as genetic data suggest a domestication process in East Asia beginning 15,000 years ago, whereas the oldest doglike fossils are found in Europe and Siberia and date to >30,000 years ago. We analyzed the mitochondrial genomes of 18 prehistoric canids from Eurasia and the New World, along with a comprehensive panel of modern dogs and wolves. Themitochondrial genomes of all modern dogs are phylogeneticallymost closely related to either ancient or modern canids of Europe. Molecular dating suggests an onset of domestication there 18,800 to 32,100 years ago. These findings imply that domestic dogs are the culmination of a process that initiated with European hunter-gatherers and the canids with whom they interacted.
Located in
Library
/
RBINS Staff Publications
-
Complex effect of projected sea temperature and wind change on flatfish dispersal
-
Climate change not only alters ocean physics and chemistry but also affects the biota. Larval dispersal patterns from spawning to nursery grounds and larval survival are driven by hydrodynamic processes and shaped by (a)biotic environmental factors. Therefore, it is important to understand the impacts of increased temperature rise and changes in wind speed and direction on larval drift and survival. We apply a particle-tracking model coupled to a 3D-hydrodynamic model of the English Channel and the North Sea to study the dispersal dynamics of the exploited flatfish (common) sole (Solea solea). We first assess model robustness and interannual variability of larval transport over the period 1995-2011. Then, using a subset of representative years (2003-2011), we investigate the impact of climate change on larval dispersal, connectivity patterns and recruitment at the nursery grounds. The impacts of five scenarios inspired by the 2040 projections of the Intergovernmental Panel on Climate Change are discussed and compared with interannual variability. The results suggest that 33% of the year-to-year recruitment variability is explained at a regional scale and that a 9-year period is sufficient to capture interannual variability in dispersal dynamics. In the scenario involving a temperature increase, early spawning and a wind change, the model predicts that (i) dispersal distance (+70%) and pelagic larval duration (+22%) will increase in response to the reduced temperature (–9%) experienced by early hatched larvae, (ii) larval recruitment at the nursery grounds will increase in some areas (36%) and decrease in others (-58%), and (iii) connectivity will show contrasting changes between areas. At the regional scale, our model predicts considerable changes in larval recruitment (+9%) and connectivity (retention -4% and seeding +37%) due to global change. All of these factors affect the distribution and productivity of sole and therefore the functioning of the demersal ecosystem and fisheries management.
Located in
Library
/
RBINS Staff Publications 2018