Skip to content. | Skip to navigation

Personal tools

You are here: Home
4680 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Adaptive evolution of stress response genes in parasites aligns with host niche diversity
Background Stress responses are key the survival of parasites and, consequently, also the evolutionary success of these organisms. Despite this importance, our understanding of the evolution of molecular pathways dealing with environmental stressors in parasitic animals remains limited. Here, we tested the link between adaptive evolution of parasite stress response genes and their ecological diversity and species richness. We comparatively investigated antioxidant, heat shock, osmoregulatory, and behaviour-related genes (foraging) in two model parasitic flatworm lineages with contrasting ecological diversity, Cichlidogyrus and Kapentagyrus (Platyhelminthes: Monopisthocotyla), through whole-genome sequencing of 11 species followed by in silico exon bait capture as well as phylogenetic and codon analyses. Results We assembled the sequences of 48 stress-related genes and report the first foraging (For) gene orthologs in flatworms. We found duplications of heat shock (Hsp) and oxidative stress genes in Cichlidogyrus compared to Kapentagyrus. We also observed positive selection patterns in genes related to mitochondrial protein import (Hsp) and behaviour (For) in species of Cichlidogyrus infecting East African cichlids—a host lineage under adaptive radiation. These patterns are consistent with a potential adaptation linked to a co-radiation of these parasites and their hosts. Additionally, the absence of cytochrome P450 and kappa and sigma-class glutathione S-transferases in monogenean flatworms is reported, genes considered essential for metazoan life. Conclusions This study potentially identifies the first molecular function linked to a flatworm radiation. Furthermore, the observed gene duplications and positive selection indicate the potentially important role of stress responses for the ecological adaptation of parasite species.
Located in Library / RBINS Staff Publications 2025
Article Reference Cichlid fishes are promising underutilised models to investigate helminth-microbiome interactions
The """"Old Friends Hypothesis"""" suggests insufficient exposure to symbionts hinders immune development, contributing to increased immune-related diseases in the Global North. The microbiome is often the focus; helminths, potentially also offering health benefits, lack attention. Infection and effect of helminths are influenced and perhaps determined by microorganisms. Mechanisms behind parasite-microbiome interactions are poorly understood, despite implications on host health. These interactions are typically studied for single helminth species in laboratory animal models, overlooking helminth diversity. Reviewing research on relationships between helminth and microbial diversity, yielded 27 publications; most focused on human or other mammalian hosts, relying on natural exposure rather than experimental helminth inoculation. Only about half investigated host health outcomes. This understudied potential warrants considering additional candidate model systems. Given the high helminthiasis burden and species diversity of helminths, we propose seeking models in the Global South, where a considerable proportion of research on diversity aspects of helminth-microbiome interactions took place. Low availability of genomic resources for helminths in the Global South, however, necessitates more integrative helminthological research efforts. Given substantial similarities in immune systems, several fishes are models for human health/disease. More effort could be done to establish this for cichlids, whose representatives in the African Great Lakes provide a well-delineated, closed natural system relevant to human health in view of fish-borne zoonoses and other water-borne parasites. A good baseline exists for these cichlids' genomics, parasitology, and microbiology. We suggest exploring African Great Lake cichlids as model hosts for interactions between microbial diversity, helminth diversity, and host health.
Located in Library / RBINS Staff Publications 2025
Article Reference ParasiteBlitz: Adaptation of the BioBlitz concept to parasitology
A BioBlitz is a rapid and intensive survey of a specific geographic area that brings together experts and often lay participants to assess biodiversity, typically of macrobiota that are easily observed and identifiable on-site. This concept has become popular across taxonomic fields, attracting interest globally to increase knowledge of local biodiversity. Inspired by the success of the approach, we undertook a ‘ParasiteBlitz’ at an unexplored locality (Stono Preserve, Charleston, South Carolina, USA) to determine its feasibility for parasites, whose assessment of diversity is largely neglected worldwide. We assembled a team of parasitologists with complementary expertise. Over 12 days in April 2023, we intensively screened fishes and aquatic invertebrates for parasites, and sampled sediment and water for environmental DNA (eDNA) metabarcoding from four aquatic habitats: wetland, freshwater pond, brackish impoundment, and tidal creek. We incorporated assistance from non-parasitologists and students. Details on methodologies and results are provided in individual papers in this Special IssueCollection. Traditional methods revealed the presence of ca. 100 species of seven major metazoan parasite taxa and the eDNA survey yielded over 1,100 amplicon sequence variants identified as parasites, most with sequences unmatched in GenBank, and resulting in only a few species identified as named species in the one-year post-Blitz timeframe we imposed upon ourselves for identification. Limitations and challenges of the ParasiteBlitz are discussed, and our results support that this approach can be effective for rapid discovery of the dimensions of parasite assemblages in an understudied environment and contribute to parasitology knowledge.
Located in Library / RBINS Staff Publications 2025
Article Reference "A Scanning Electron Microscopy method to visualise the copulatory organ morphology of microturbellarian flatworms: Trigonostomum Schmidt, 1852 as a case study"
Traditional methods for studying the morphology of microturbellarian flatworms rely on light microscopy, which often lacks the resolution necessary to capture fine structural details. Therefore, we present a protocol to improve the visualisation of structural morphological details in microturbellarians by means of scanning electron microscopy (SEM). We demonstrate this method by imaging the sclerotised copulatory organs of three species of Trigonostomum (Rhabdocoela, Trigonostomidae): T. venenosum, T. setigerum, and T. penicillatum. Additionally, we successfully visualise the bursal appendage of T. penicillatum. SEM imaging offered new morphological insights for the genus, and corrected earlier interpretations made with light microscopy. The method requires precision and careful handling, especially during the isolation of the hard parts. However, it is cost-effective and straightforward to carry out in any standard laboratory setting. Hence, our SEM protocol complements traditional light microscopy and opens new avenues for taxonomical research in microturbellarian taxa with hard parts.
Located in Library / RBINS Staff Publications 2025
Article Reference Utilization of Cloud Computing for Water Quality Monitoring in the Northern Waters of Aceh
Managing marine geographic information systems is crucial, especially with climate change and the rise of spatial big data. Cloud-based geospatial systems are essential for stakeholders needing quick decision-making in marine conservation. This study examines the capabilities of Google Earth Engine (GEE) in analyzing sea surface quality in the northern waters of Aceh (NWA). The results show GEE can access remote sensing datasets and reanalysis models to map temperature, salinity, and chlorophyll-a. Annual trends reveal lower salinity near the Malacca Strait and higher levels in the Indian Ocean and Andaman Sea. GEE supports proactive coastal ecosystem management, emphasizing the role of geospatial technology in marine conservation and civil engineering for climate-resilient coastal development.
Located in Library / RBINS Staff Publications 2024
Article Reference Stratification and diversity of beeltes (Insecta, Coleoptera) in native elm forests of the Ussuri Nature Reserve, Russia
Located in Library / RBINS Staff Publications 2016
Article Reference Descriptions de nouvelles espèces africaines de Cigaritis Donzel, 1847 et note synonymique (Lepidoptera, Lycaenidae)
Located in Library / RBINS collections by external author(s)
Article Reference Complément à l’étude du sous-genre Chelorhinella De Palma & Franz, 2010 (Coleoptera, Cetoniidae, Cetoniinae, Goliathini)
Located in Library / RBINS collections by external author(s)
Article Reference Aparallactus modestus ubangensis (Boulenger, 1897). Ubangi Centipede-eater. Reproduction.
Located in Library / RBINS Staff Publications 2019
Article Reference Micro-computed tomography for natural history specimens: a handbook of best practice protocols
Micro-computed tomography (micro-CT or microtomography) is a non-destructive imaging technique using X-rays which allows the digitisation of an object in three dimensions. The ability of micro-CT imaging to visualise both internal and external features of an object, without destroying the specimen, makes the technique ideal for the digitisation of valuable natural history collections. This handbook serves as a comprehensive guide to laboratory micro-CT imaging of different types of natural history specimens, including zoological, botanical, palaeontological and geological samples.
Located in Library / RBINS Staff Publications 2019