Skip to content. | Skip to navigation

Personal tools

You are here: Home
4357 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Un Malachide nouveau pour la faune de Belgique, Hypebaeus albifrons (Fabricius, 1775) (Coleoptera, Melyridae, Malachiinae)
Located in Library / RBINS Staff Publications 2021
Article Reference Un nucinulide (Brachiopoda, Rhynchonellida) nouveau de l’Emsien (Dévonien) du Massif Armoricain (France) - A new nucinulid (Brachiopoda, Rhynchonellida) from the Emsian (Devonian) of the Armorican Massif (France)
Located in Library / RBINS Staff Publications
Article Reference Un premier cas de gynandromorphisme dans la famille des Trictinotomidae Blanchard, 1845 (Insecta Coleoptera)
Located in Library / RBINS Staff Publications 2018
Article Reference Uncertainties associated with in situ high-frequency long-term observations of suspended particulate matter concentration using optical and accoustic sensors
Located in Library / RBINS Staff Publications 2019
Article Reference Uncertainty assessment applied to marine subsurface datasets
A recently released voxel model quantifying aggregate resources of the Belgian part of the North Sea includes lithological properties of all Quaternary sediments and modelling-related uncertainty. As the underlying borehole data come from various sources and cover a long time-span, data-related uncertainties should be accounted for as well. Applying a tiered data-uncertainty assessment to a composite lithology dataset with uniform, standardized lithological descriptions and rigorously completed metadata fields, uncertainties were qualified and quantified for positioning, sampling and vintage. The uncertainty on horizontal positioning combines navigational errors, on-board and off-deck offsets and underwater drift. Sampling-gear uncertainty evaluates the suitability of each instrument in terms of its efficiency of sediment yield per lithological class. Vintage uncertainty provides a likelihood of temporal change since the moment of sampling, using the mobility of fine-scale bedforms as an indicator. For each uncertainty component, quality flags from 1 (very uncertain) to 5 (very certain) were defined and converted into corresponding uncertainty percentages meeting the input requirements of the voxel model. Obviously, an uncertainty-based data selection procedure, aimed at improving the confidence of data products, reduces data density. Whether or not this density reduction is detrimental to the spatial coverage of data products, will depend on their intended use. At the very least, demonstrable reductions in spatial coverage will help to highlight the need for future data acquisition and to optimize survey plans. By opening up our subsurface model with associated data uncertainties in a public decision support application, policy makers and other end users are better able to visualize overall confidence and identify areas with insufficient coverage meeting their needs. Having to work with a borehole dataset that is increasingly limited with depth below the seabed, engineering geologists and geospatial analysts in particular will profit from a better visualization of datarelated uncertainty.
Located in Library / RBINS Staff Publications 2020
Article Reference Uncertainty estimation for operational ocean forecast products—a multi-model ensemble for the North Sea and the Baltic Sea
Multi-model ensembles for sea surface temperature (SST), sea surface salinity (SSS), sea surface currents (SSC), and water transports have been developed for the North Sea and the Baltic Sea using outputs from several operational ocean forecasting models provided by different institutes. The individual models differ in model code, resolution, boundary conditions, atmospheric forcing, and data assimilation. The ensembles are produced on a daily basis. Daily statistics are calculated for each parameter giving information about the spread of the forecasts with standard deviation, ensemble mean and median, and coefficient of variation. High forecast uncertainty, i.e., for SSS and SSC, was found in the Skagerrak, Kattegat (Transition Area between North Sea and Baltic Sea), and the Norwegian Channel. Based on the data collected, longer-term statistical analyses have been done, such as a comparison with satellite data for SST and evaluation of the deviation between forecasts in temporal and spatial scale. Regions of high forecast uncertainty for SSS and SSC have been detected in the Transition Area and the Norwegian Channel where a large spread between the models might evolve due to differences in simulating the frontal structures and their movements. A distinct seasonal pattern could be distinguished for SST with high uncertainty between the forecasts during summer. Forecasts with relatively high deviation from the multi-model ensemble (MME) products or the other individual forecasts were detected for each region and each parameter. The comparison with satellite data showed that the error of the MME products is lowest compared to those of the ensemble members.
Located in Library / RBINS Staff Publications
Article Reference Understanding taxonomic and nomenclatural instability – a case study of the Manila clam
Located in Library / RBINS Staff Publications 2019
Inproceedings Reference Understanding the Earth for the people that inhabit it: Belgian and Flemish institutes joining hands in the framework of GeoERA
Societies rely on a secure, responsible and affordable supply of resources to meet their basic needs, in order to live life in a safe and healthy environment. The natural resources from the subsurface, i.e. groundwater, geo-energy and raw materials, represent essential elements in this provision. Safety from catastrophic events, such as those linked to earthquakes, or continuous ones, such as subsidence, can be improved by understanding the causes, frequency or rates of processes, and their impacts. These applied goals require a correct and intimate understanding of the regional geology. While geological surveys and other organisations working on the subsurface were initially very much focussed on national supply of resources, issues such as environmental consequences have increasingly come to the forefront. Europe has now become the relevant scale when considering import or export of raw materials. This results in an increasing pressure to place regional knowledge in a cross-border or pan-European context. To support cross-border, thematic research, the European Commission issued a call for an ERA-NET to which a consortium of 33 national and 15 regional organisations responded. An ERA-NET is a project that internally organises a competitive call for projects. In 2017, GeoERA officially started. After an internal call for project proposals, 15 projects were approved that receive about 30% top-up funding under H2020. The remainder of the resources comes from different sources of funding, totalling the budget to 30.3 M€. Projects are funded under the themes Geo-Energy, Raw Materials, and Ground Water. A fourth theme, Data Infrastructure, will realise the shared ambition of all projects to jointly store and publish their data on-line as an extension of country specific databases (e.g. DOV, Gisel). The starting date of the GeoERA research projects granted funding is 1 July 2018, and the projects will run for three years. Belgian and Flemish institutes involved are: the Geological Survey of Belgium (GSB), the Bureau for Environment and Spatial Development – Flanders (VPO), the Flemish Institute for Technological Research (VITO), Flanders Environment Agency (VMM) and the Belgian Nuclear Research Centre (SCK-CEN). Although not involved as official partner, the Geological Survey of Wallonia supports the initiative by means of data provision. The GSB is involved in seven projects, VITO, as linked third partyof VPO in two projects, VPO itself in one project, and VMM in three projects of which two will be elaborated in close cooperation with SCK-CEN, the linked third party of VMM. Together with VPO-VITO, the GSB is coordinator of GeoConnect³d, a strongly crossthematic Geo-Energy project that aims to disclose geological information for policy support and subsurface management. Other funded Geo-Energy projects in which the GSB is involved are MUSE, a project on shallow geothermal energy in European urban areas, and HIKE, on induced hazards and impacts related to the exploitation of subsurface resources throughout Europe. Under the theme Raw Materials the GSB participates in Mintell4EU, which aims to improve the European knowledge base on raw materials, as well as in FRAME, that is designed to research the critical and strategic raw materials in Europe. For groundwater the GSBeis directly involved in the HOVER project, mainly on data collection related to natural springs. VMM is also involved in HOVER, but in a work package on the distinction between anthropogenic and geogenic causes of groundwater contamination (especially how to deal with it in groundwater policy and management) with substances like arsenic. Moreover, VMM is, together with SCK-CEN, participating and leading a work package in two other Ground Water projects, namely VoGERA on investigating the vulnerability of shallow groundwater resources to deep subsurface energy-related activities, and RESOURces about harmonization of information about Europe’s groundwater resources through cross-border demonstration projects. Finally, the GIP-P project, where the GSB is work package leader, will establish a common platform for organising, disseminating and sustaining the digital results of the GeoERA projects. GeoERA is more than the occasional H2020 project. The combined efforts by the Belgian and Flemish institutes to engage in 10 different projects is a cooperative approach, with clear ambitions to demonstrate how cross-thematic research links can be set-up by different institutes, and how these can provide fruitful results for policy makers and other stakeholders. This is a notable effort in a project that is about establishing and demonstrating the added value of a European geological surveys research area, and finding how to optimally link regional, national and European efforts and interests. Acknowledgements This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 731166
Located in Library / RBINS Staff Publications 2018
Article Reference Understanding the impact of sand extraction on benthic ecosystem functioning: a combination of functional indices and biological trait analysis
Located in Library / RBINS Staff Publications 2023
Book Reference Understanding the role of ponds in a changing world
Located in Library / RBINS Staff Publications