Skip to content. | Skip to navigation

Personal tools

You are here: Home
4357 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Subspecific rodent taxa as the relevant host taxonomic level for mammarenavirus host specificity
Located in Library / RBINS Staff Publications 2023 OA
Inproceedings Reference Subterranean ants: what have been advanced in the last frontier of ant biodiversity studies?
Located in Library / RBINS Staff Publications 2017
Article Reference Subtidal Natural Hard Substrate Quantitative Habitat Mapping: Interlinking Underwater Acoustics and Optical Imagery with Machine Learning
Subtidal natural hard substrates (SNHS) promote occupancy by rich benthic communities that provide irreplaceable and fundamental ecosystem functions, representing a global priority target for nature conservation and recognised in most European environmental legislation. However, scientifically validated methodologies for their quantitative spatial demarcation, including information on species occupancy and fine-scale environmental drivers (e.g., the effect of stone size on colonisation) are rare. This is, however, crucial information for sound ecological management. In this investigation, high-resolution (1 m) multibeam echosounder (MBES) depth and backscatter data and derivates, underwater imagery (UI) by video drop-frame, and grab sediment samples, all acquired within 32 km2 of seafloor in offshore Belgian waters, were integrated to produce a random forest (RF) spatial model, predicting the continuous distribution of the seafloor areal cover/m2 of the stones’ grain sizes promoting colonisation by sessile epilithic organisms. A semi-automated UI acquisition, processing, and analytical workflow was set up to quantitatively study the colonisation proportion of different grain sizes, identifying the colonisation potential to begin at stones with grain sizes Ø ≥ 2 cm. This parameter (i.e., % areal cover of stones Ø ≥ 2 cm/m2) was selected as the response variable for spatial predictive modelling. The model output is presented along with a protocol of error and uncertainty estimation. RF is confirmed as an accurate, versatile, and transferable mapping methodology, applicable to area-wide mapping of SNHS. UI is confirmed as an essential aid to acoustic seafloor classification, providing spatially representative numerical observations needed to carry out quantitative seafloor modelling of ecologically relevant parameters. This contribution sheds innovative insights into the ecologically relevant delineation of subtidal natural reef habitat, exploiting state-of-the-art underwater remote sensing and acoustic seafloor classification approaches.
Located in Library / RBINS Staff Publications 2021
Article Reference Succession and seasonal dynamics of the epifauna community on offshore wind farm foundations and their role as stepping stones for non-indigenous species
Located in Library / RBINS Staff Publications
Article Reference Suggested guidelines for invasive sampling of hominid remains
Located in Library / RBINS Staff Publications
Article Reference Suitability of multisensory satellites for long-term chlorophyll assessment in coastal waters: A case study in optically-complex waters of the temperate region
We investigated the use of multisensory satellite data to determine long-term changes in surface chlorophyll concentrations using a 19-year (1998–2016) time series of chlorophyll data in the Danish Kattegat region of the Baltic Sea. Merged satellite estimates (SeaWiFS-MODIS/Aqua-MERIS-VIIRS) were compared with in situ ship based time series from four monitoring stations situated with increasing distance from land and nutrient sources. In situ and satellite derived estimates showed similar trend in chlorophyll with several fold higher values closer to land. Satellites aligned very well with in situ estimates in the open water stations but showed significant differences in magnitude and inter-annual variability, in particular in shallow coastal waters. Some systematic deviation was observed with satellite underestimating the growing season average for the earlier periods (1998–2002) and overestimating for the later period (2012–2016) compared to in situ estimates. Comparing growing season chlorophyll means over the 19 year period showed increasing magnitude and variability in nearshore and shallower areas, most pronounced for the satellite derived chlorophyll. Satellites overestimated chlorophyll in nearshore areas 2–4 fold, despite excluding shallow nearshore areas with possible benthic interferences from the analyses. This bias needs further validation and requires correction to improve the overall applicability of satellites for long-term monitoring of chlorophyll in the Kattegat region. From analysis of normalized data, we developed a simple correction model, which reduced deviations considerably between methods, underlying the importance of in situ data for application of satellite observations. While significant deviations were observed from in situ data, satellites are clearly advantageous in the much higher temporal and high spatial coverage they provide. Multisensory satellites can, however, not be used currently as a standalone technique for long-term assessment of chlorophyll. They require validation with in situ measurements, which provide essential data for calibration, validation and correction of satellite based estimates. A complementary use of multisensory satellite and in situ measurements therefore remains essential to assess trends in the ecological status of optically complex waters such as the Kattegat region of the Baltic Sea.
Located in Library / RBINS Staff Publications 2022
Inproceedings Reference Sulfidic Habitats in the Frasassi Caves, Italy: A Hotspot of Subterranean Biodiversity
Located in Library / RBINS Staff Publications 2022 OA
Article Reference Summary of our present knowledge of the spider communities of the Galápagos archipelago. First analysis of the spider communities of the islands Santa Cruz and Isabela
Located in Library / RBINS Staff Publications
Article Reference Summary of the morphology, taxonomy and distribution of Limnocythere inopinata (Baird, 1843) (Ostracoda, Limnocytherinae). In: HORNE, D.J. & MARTENS, K. (eds.), The evolutionary ecology of reproductive modes in non-marine Ostracoda
Located in Library / RBINS Staff Publications
Article Reference Summary of the state of correlation in the Devonian of the Ardennes (Belgium-NE France) resulting from the decisions of the SDS
Located in Library / RBINS Staff Publications 2016