The current study presents the ostracod communities recovered from 26 shallow waterbodies in southern Kenya, combined with an ecological assessment of habitat characteristics. A total of 37 waterbodies were sampled in 2001 and 2003, ranging from small ephemeral pools to large permanent lakes along broad gradients in altitude (700–2 800 m) and salinity (37–67 200 μS cm−1). Between 0 and 12 species were recorded per site. Lack of ostracods was associated with either hypersaline waters, or the presence of fish in fresh waters. Three of the 32 recovered ostracod taxa, Physocypria sp., Sarscypridopsis cf. elizabethae and Oncocypris mulleri, combined a wide distribution with frequent local dominance. Canonical correspondence analysis on species–environment relationships indicated that littoral vegetation, altitude, surface water temperature and pH best explain the variation in ostracod communities. Presence of fish and water depth also influence species occurrence, with the larger species being more common in shallow waterbodies lacking fish. Based on Chao’s estimator of total regional species richness, this survey recovered about two-thirds (60–68%) of the regional ostracod species pool. Scanning electron micrographs (SEM) of the valve morphology of 14 ostracod taxa are provided, in order to facilitate their application in biodiversity and water-quality assessments and in palaeoenvironmental reconstruction.
Located in
Library
/
RBINS Staff Publications 2016
Sandy beaches and their surf zones are the most common open shoreline habitat; however, surf zone fauna in the tropics is one of the least studied communities in the world. In the current study, we tested the hypothesis that Ecuadorian surf zone hyperbenthos (invertebrates and vertebrates 1–5 mm in length) and epibenthos (fish and macrocrustaceans N 5 mm in length) vary among beaches and seasons. Therefore, the fauna was described and related to environmental variables. In addition, indicator taxa were identified. The hyperbenthos was divided into holo- and mero-hyperbenthos depending on whether taxa were present during their entire life or only early life stages, respectively. Sampleswere collected at eight different beaches during thewet, dry and intermediate or transitional season during the low spring tide, from 1999 to 2000, using a hyperbenthic sledge and epibenthic trawl. A total of 447 hyperbenthic and 30 epibenthic taxawere collected, most of which were crustaceans and fish, respectively (52 and 60% of taxa). The mysid, Metamysidopsis sp.,was the most abundant member of the hyperbenthos (average±SD: 14,425±40,039 ind. 100m−2, present in 92% of samples collected), and the swimming blue crab, Areneus mexicanus, was the most encountered species among the epibenthos (1 ± 1 ind. 100 m−2, 97% of samples collected). All faunal groups varied among beaches, while the holo-hyperbenthos and less strongly the epibenthos varied among seasons. Variability in the three faunas among beaches, distance from the continental slope and the Guayas estuarine system, and beach water physical characteristics were all strongly correlated suggesting adjacent habitats can influence surf zone biological communities and water physical characteristics. Seasonal effects were related to changes inwater physical characteristics among seasons potentially reflecting changes in oceanic currents. These results suggest that, similarly to other beaches around the world, Ecuadorian surf zone fauna is abundant, diverse, and vary among beaches and, for some faunal groups, among seasons, potentially due to the influence of adjacent habitats and seasonal changes in oceanic currents.
Located in
Library
/
RBINS Staff Publications 2017