How asexual reproduction shapes transposable element (TE) content and diversity in eukaryotic genomes remains debated. We performed an initial survey of TE load and diversity in the putative ancient asexual ostracod Darwinula stevensoni. We examined long contiguous stretches of DNA in clones from a genomic fosmid library, totaling about 2.5 Mb, and supplemented these data with results on TE abundance and diversity from an Illumina draft genome. In contrast to other TE studies in putatively ancient asexuals, which revealed relatively low TE content, we found that at least 19% of the fosmid dataset and 26% of the genome assembly corresponded to known transposons. We observed a high diversity of transposon families, including LINE, gypsy, PLE, mariner/Tc, hAT, CMC, Sola2, Ginger, Merlin, Harbinger, MITEs and helitrons, with the prevalence of DNA transposons. The predominantly low levels of sequence diversity indicate that many TEs are or have recently been active. In the fosmid data, no correlation was found between telomeric repeats and non-LTR retrotransposons, which are present near telomeres in other taxa. Most TEs in the fosmid data were located outside of introns and almost none were found in exons. We also report an N-terminal Myb/SANT-like DNA-binding domain in site-specific R4/Dong non-LTR retrotransposons. Although initial results on transposable loads need to be verified with high quality draft genomes, this study provides important first insights into TE dynamics in putative ancient asexual ostracods.
Located in
Library
/
RBINS Staff Publications 2021
The ubiquitous sea cucumber Holothuria (Thymiosycia) arenicola Semper, 1868, externally characterized by a double row of dark blotches of various sizes on its dorsal body wall and a cryptic behaviour, is generally assumed to have a wide tropical distribution, although it has not been reported from the Eastern tlantic. Careful morphological examination, with emphasis on the ossicle assemblage, of type and non-type H. arenicola specimens sampled in the Indian, Pacific and tlantic Ocean, its subjective synonyms and species with a similar colouration and habit, revealed that H. arenicola is often confused with other species. This paper formally separates the different species in the H. arenicola complex, one of them being a species new to science: Holothuria (Thymiosycia) kerriensis sp. nov. dditionally, we describe two other species that are often confused with H. arenicola: Holothuria (Lessonothuria) gracilis Semper, 1868 and H. (Thymiosycia) strigosa Selenka, 1867. The H. arenicola complex per se is keyed-out, with the ossicle assemblage of the musculature being recognised as an important, previously largely neglected, guide. This contribution highlights the importance of building and curating well-maintaned natural history collections to understand biodiversity through time and space.
Located in
Library
/
RBINS Staff Publications 2024