Abstract The aim of this article is to describe a newly created open access database of archeological human remains collections from Flanders, Belgium. The MEMOR database (www.memor.be) was created to provide an overview of the current practices of loans, reburial, and the research potential of human skeletons from archeological sites currently stored in Flanders. In addition, the project aimed to provide a legal and ethical framework for the handling of human remains and was created around stakeholder involvement from anthropologists, geneticists, contract archeologists, the local, regional and national government agencies, local and national government, universities, and representatives of the major religions. The project has resulted in the creation of a rich database with many collections available for study. The database was created using the open-source Arches data management platform that is freely available for organizations worldwide to configure in accordance with their individual needs and without restrictions on its use. Each collection is linked to information about the excavation and the site the remains originate from, its size and time period. In addition, a research potential tab reveals whether any analyses were performed, and whether excavation notes are available with the assemblage. The database currently contains 742 collections, ranging in size from 1 to over 1000 individuals. New collections will continue to be added when new assemblages are excavated and studied. The database can also be expanded to include human remains collections from other regions and other material categories, such as archaeozoological collections.
Located in
Library
/
RBINS Staff Publications 2023
Dental calculus, or mineralized plaque, represents a record of ancient biomolecules and food residues. Recently, ancient metagenomics made it possible to unlock the wealth of microbial and dietary information of dental calculus to reconstruct oral microbiomes and lifestyle of humans from the past. Although most studies have so far focused on ancient humans, dental calculus is known to form in a wide range of animals, potentially informing on how human-animal interactions changed the animals’ oral ecology. Here, we characterise the oral microbiome of six ancient Egyptian baboons held in captivity during the late Pharaonic era (9th–6th centuries BC) and of two historical baboons from a zoo via shotgun metagenomics. We demonstrate that these captive baboons possessed a distinctive oral microbiome when compared to ancient and modern humans, Neanderthals and a wild chimpanzee. These results may reflect the omnivorous dietary behaviour of baboons, even though health, food provisioning and other factors associated with human management, may have changed the baboons’ oral microbiome. We anticipate our study to be a starting point for more extensive studies on ancient animal oral microbiomes to examine the extent to which domestication and human management in the past affected the diet, health and lifestyle of target animals.
Located in
Library
/
RBINS Staff Publications 2019