-
Exploring sexual dimorphism of human occipital and temporal bones through geometric morphometrics in an identified Western-European sample
-
Abstract Sex estimation is a paramount step of bioprofiling in both forensic anthropology and osteoarchaeology. When the pelvis is not optimally preserved, anthropologists commonly rely on the cranium to accurately estimate sex. Over the last decades, the geometric morphometric (GM) approach has been used to determine sexual dimorphism of the crania, in size and shape, overcoming some difficulties of traditional visual and metric methods. This article aims to investigate sexual dimorphism of the occipital and temporal region through GM analysis in a metapopulation of 50 Western-European identified individuals. Statistical analyses were performed to compare centroid size and shape data between sexes through the examination of distinct functional modules. Regression and Procrustes ANOVA were used to examine allometric and asymmetrical implications. Discriminant functions, combining size and shape data, were established. Significant dimorphism in size was found, with males having larger crania, confirming the major influence size has on cranial morphology. Allometric relationships were found to be statistically significant in both right and left temporal bones while shape differences between sexes were only significant on the right temporal bone. The visualization of the mean consensus demonstrated that males displayed a larger mastoid process associated with a reduced mastoid triangle and less projected occipital condyles. This exploratory study confirms that GM analysis represents an effective way to quantitatively capture shape of dimorphic structures, even on complex rounded ones such as the mastoid region. Further examination in a larger sample would be valuable to design objective visualization tools that can improve morphoscopic sex estimation methods.
Located in
Library
/
RBINS Staff Publications 2022
-
Exploring species level taxonomy and species delimitation methods in the facultatively self-fertilizing land snail genus Rumina (Gastropoda: Pulmonata)
-
Located in
Library
/
RBINS Staff Publications
-
Exploring the bushmeat market in Brussels, Belgium: a clandestine luxury business
-
Located in
Library
/
RBINS Staff Publications 2021
-
Exploring the potential of Lake Hamana (Shizuoka Prefecture, Japan) to hold a long and reliable sedimentary record of paleo-earthquakes and -tsunami along the Nankai-Suruga Trough.
-
Coastal Lake Hamana is located near the convergent tectonic boundary of the Nankai-Suruga Trough, along which the Philippine Sea slab subducts underneath the Eurasian Plate, giving rise to repeated tsunamigenic megathrust earthquakes (Mw≥8). A good understanding of the earthquake- and tsunami-triggering mechanisms in terms of rupture mode and recurrence pattern in time and space, is crucial in order to better estimate the complexity of seismic risks for the densely populated Enshu-nada coast. Based on existing historical data of paleoseismicity (last ~1300 years), the easternmost segment (Tōkai segment) of the Nankai-Suruga Trough appears to exhibit a seismic gap and is expected to rupture in the near future, causing the next “Tōkai earthquake”. Studying the sedimentary infill of Lake Hamana may help to fine-tune hazard assessment in the area of interest. Thanks to its extensive accommodation space, the Hamana lake basin is considered to be a good archive of past “big wave” events. Fieldwork (Oct.-Nov. 2014) comprised a reflection-seismic survey for imaging the lake’s stratigraphic features, based on which favourable locations for gravity coring were selected. A systematic sampling of bottom sediments from different sites enables us to evaluate vertical as well as lateral changes in depositional environment, including event deposits generated by tsunamis and tropical storms (i.e. typhoons). An important part of the study is dedicated to qualitatively distinguish sedimentary facies of storm deposits from the ones generated by tsunamis, since this is an essential step in correctly assessing future hazards. For identification of marine tsunami incursions, a set of sedimentological, geophysical, geochemical and micropaleontological analyses are applied on the core sediments in a multi-proxy approach. Radionuclide dating provides the necessary timeframe and information on prevailing sedimentation rates. Sites bearing the potential of recording complete and long event histories will be sampled with long cores.
Located in
Library
/
No RBINS Staff publications
-
Exploring the potential of Lake Hamana to hold a long and reliable sedimentary record of paleotsunamis along the Nankai-Suruga Trough
-
Located in
Library
/
RBINS Staff Publications 2016
-
Exploring the shell-based taxonomy of the Sri Lankan land snail Corilla H. and A. Adams, 1855 (Pulmonata: Corillidae) using mitochondrial DNA
-
Located in
Library
/
RBINS Staff Publications 2017
-
Exploring the use of Cytochrome Oxidase c Subunit 1 (COI) for DNA barcoding of free-living marine nematodes
-
Background: The identification of free-living marine nematodes is difficult because of the paucity of easily scorable diagnostic morphological characters. Consequently, molecular identification tools could solve this problem. Unfortunately, hitherto most of these tools relied on 18S rDNA and 28S rDNA sequences, which often lack sufficient resolution at the species level. In contrast, only a few mitochondrial COI data are available for free-living marine nematodes. Therefore, we investigate the amplification and sequencing success of two partitions of the COI gene, the M1-M6 barcoding region and the I3-M11 partition. Methodology: Both partitions were analysed in 41 nematode species from a wide phylogenetic range. The taxon specific primers for the I3-M11 partition outperformed the universal M1-M6 primers in terms of amplification success (87.8\% vs. 65.8\%, respectively) and produced a higher number of bidirectional COI sequences (65.8\% vs 39.0\%, respectively). A threshold value of 5\% K2P genetic divergence marked a clear DNA barcoding gap separating intra-and interspecific distances: 99.3\% of all interspecific comparisons were 〉0.05, while 99.5\% of all intraspecific comparisons were 〈0.05 K2P distance. Conclusion: The I3-M11 partition reliably identifies a wide range of marine nematodes, and our data show the need for a strict scrutiny of the obtained sequences, since contamination, nuclear pseudogenes and endosymbionts may confuse nematode species identification by COI sequences.
Located in
Library
/
No RBINS Staff publications
-
Exploring the use of micro-computed tomography (micro-CT) in the taxonomy of sea cucumbers: a case-study on the gravel sea cucumber Neopentadactyla mixta (Östergren, 1898) (Echinodermata, Holothuroidea, Phyllophoridae)
-
Located in
Library
/
RBINS Staff Publications 2021
-
Extending Our Scientific Reach in Arboreal Ecosystems for Research and Management
-
Located in
Library
/
RBINS Staff Publications 2018
-
Extension of the leafhopper genus Multinervis (Hemiptera, Cicadellidae, Megophthalminae, Agalliini) from Northern to Central Vietnam, with the description of one new species
-
Located in
Library
/
RBINS Staff Publications 2025