Skip to content. | Skip to navigation

Personal tools

You are here: Home
4358 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Empididae (Diptera) or dance flies of the Botanic Garden Jean Massart (Brussels-Capital Region, Belgium) with comments on Red Data Book status
Located in Library / RBINS Staff Publications 2023 OA
Article Reference Empidoid flies from Cabo Verde (Diptera, Empidoidea, Dolichopodidade and Hybotidae) are not only composed of Old World tropical species
Located in Library / No RBINS Staff publications
Article Reference Enabling Renewable Energy While Protecting Wildlife: An Ecological Risk-Based Approach to Wind Energy Development Using Ecosystem-Based Management Values
Acceptance of wind energy development is challenged by stakeholders’ concerns about potential effects on the environment, specifically on wildlife, such as birds, bats, and (for offshore wind) marine animals, and the habitats that support them. Communities near wind energy developments are also concerned with social and economic impacts, as well as impacts on aesthetics, historical sites, and recreation and tourism. Lack of a systematic, widely accepted, and balanced approach for measuring the potential damage to wildlife, habitats, and communities continues to leave wind developers, regulators, and other stakeholders in an uncertain position. This paper explores ecological risk-based management (RBM) in wind energy development for land-based and offshore wind installations. This paper provides a framework for the adaptation of ecosystem-based management to wind energy development and examines that framework through a series of case studies and best management practices for applying risk-based principles to wind energy. Ten case studies indicate that wind farm monitoring is often driven by regulatory requirements that may not be underpinned by scientific questions. While each case applies principles of adaptive management, there is room for improvement in applying scientific principles to the data collection and analysis. Challenges and constraints for wind farm development to meet RBM framework criteria include collecting sufficient baseline and monitoring data year-round, engaging stakeholder facilitators, and bringing together large and diverse scientific teams. The RBM framework approach may provide insights for improved siting and consenting/permitting processes for regulators and their advisors, particularly in those nations where wind energy is still in the early development stages on land or at sea.
Located in Library / RBINS Staff Publications 2020
Article Reference Encounter competition partly explains the segregation of the sandy beach amphipods Bathyporeia pilosa and Bathyporeia sarsi. A mecocosm experiment.
Located in Library / RBINS Staff Publications
Article Reference object code End-Permian marine extinction due to temperature-driven nutrient recycling and euxinia
Extreme warming at the end-Permian induced profound changes in marine biogeochemical cycling and animal habitability, leading to the largest metazoan extinction in Earth’s history. However, a causal mechanism for the extinction that is consistent with various proxy records of geochemical conditions through the interval has yet to be determined. Here we combine an Earth system model with global and local redox interpretations from the Permian/Triassic in an attempt to identify this causal mechanism. Our results show that a temperature-driven increase in microbial respiration can reconcile reconstructions of the spatial distribution of euxinia and seafloor anoxia spanning the Permian–Triassic transition. We illustrate how enhanced metabolic rates would have strengthened upper-ocean nutrient (phosphate) recycling, and thus shoaled and intensified the oxygen minimum zones, eventually causing euxinic waters to expand onto continental shelves and poison benthic habitats. Taken together, our findings demonstrate the sensitive interconnections between temperature, microbial metabolism, ocean redox state and carbon cycling during the end-Permian mass extinction. As enhanced microbial activity in the ocean interior also lowers subsurface dissolved inorganic carbon isotopic values, the carbon release as inferred from isotope changes in shallow subsurface carbonates is likely overestimated, not only for this event, but perhaps for many other carbon cycle and climate perturbations through Earth’s history.
Located in Library / RBINS Staff Publications 2021
Article Reference Endemism in Inland Waters. In : LIKENS, G. (Ed.), Encyclopedia of Inland Waters
Located in Library / RBINS Staff Publications
Inbook Reference Endocasts of ornithopod dinosaurs: comparative anatomy
Located in Library / RBINS Staff Publications 2023
Article Reference Endocranial morphology of Liaoceratops yanzigouensis (Dinosauria: Ceratopsia) from Early Cretaceous Jehol Biota of Liaoning in China
Located in Library / RBINS Staff Publications 2022
Article Reference Endocranial morphology of Palaeocene Plesiadapis tricuspidens and evolution of the early primate brain
Expansion of the brain is a key feature of primate evolution. The fossil record, although incomplete, allows a partial reconstruction of changes in primate brain size and morphology through time. Palaeogene plesiadapoids, closest relatives of Euprimates (or crown-group primates), are crucial for understanding early evolution of the primate brain. However, brain morphology of this group remains poorly documented, and major questions remain regarding the initial phase of euprimate brain evolution. Micro-CT investigation of the endocranial morphology of Plesiadapis tricuspidens from the Late Palaeocene of Europe—the most complete plesiadapoid cranium known—shows that plesiadapoids retained a very small and simple brain. Plesiadapis has midbrain exposure, and minimal encephalization and neocorticalization, making it comparable with that of stem rodents and lagomorphs. However, Plesiadapis shares a domed neocortex and downwardly shifted olfactory-bulb axis with Euprimates. If accepted phylogenetic relationships are correct, then this implies that the euprimate brain underwent drastic reorganization during the Palaeocene, and some changes in brain structure preceded brain size increase and neocortex expansion during evolution of the primate brain.
Located in Library / RBINS Staff Publications
Article Reference Endogenous toxins and the coupling of gregariousness to conspicuousness in Argidae and Pergidae sawflies
Located in Library / RBINS Staff Publications 2018