Skip to content. | Skip to navigation

Personal tools

You are here: Home
1188 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Inproceedings Reference BopCo, a barcoding facility for organisms and tissues of policy concern, and its role in the identification of vector species
Located in Library / RBINS Staff Publications 2022 OA
Inproceedings Reference BopCo: an identification service for species of policy concern, and its role in the Belgian speciesid.be consortium
Located in Library / RBINS Staff Publications 2024
Inproceedings Reference BOPCO: An identification service for species of policy concern, including invasive alien species
Located in Library / RBINS Staff Publications 2024
Inproceedings Reference BopCo: The Belgian barcoding facility for organisms and tissues of policy concern
Located in Library / RBINS Staff Publications 2024
Article Reference Boussu-Boussu: la faune du château de Boussu
Located in Library / RBINS Staff Publications
Inproceedings Reference Brain evolution of early placental mammals: the impact of the end-Cretaceous mass extinction on the the neurosensory system of our distant relatives
The end-Cretaceous mass extinction, 66 million years ago, profoundly reshaped the biodiversity of our planet. After likely originating in the Cretaceous, placental mammals (species giving live birth to well-developed young) survived the extinction and quickly diversified in the ensuing Paleocene. Compared to Mesozoic species, extant placentals have advanced neurosensory abilities, enabled by a proportionally large brain with an expanded neocortex. This brain construction was acquired by the Eocene, but its origins, and how its evolution relates to extinction survivorship and recovery, are unclear, because little is known about the neurosensory systems of Paleocene species. We used high-resolution computed tomography (CT) scanning to build digital brain models in 29 extinct placentals (including 23 from the Paleocene). We added these to data from the literature to construct a database of 98 taxa, from the Jurassic to the Eocene, which we assessed in a phylogenetic context. We find that the Phylogenetic Encephalization Quotient (PEQ), a measure of relative brain size, increased in the Cretaceous along branches leading to Placentalia, but then decreased in Paleocene clades (taeniodonts, phenacodontids, pantodonts, periptychids, and arctocyonids). Later, during the Eocene, the PEQ increased independently in all crown groups (e.g., euarchontoglirans and laurasiatherians). The Paleocene decline in PEQ was driven by body mass increasing much more rapidly after the extinction than brain volume. The neocortex remained small, relative to the rest of the brain, in Paleocene taxa and expanded independently in Eocene crown groups. The relative size of the olfactory bulbs, however, remained relatively stable over time, except for a major decrease in Euarchontoglires and some Eocene artiodactyls, while the petrosal lobules (associated with eye movement coordination) decreased in size in Laurasiatheria but increased in Euarchontoglires. Our results indicate that an enlarged, modern-style brain was not instrumental to the survival of placental mammal ancestors at the end-Cretaceous, nor to their radiation in the Paleocene. Instead, opening of new ecological niches post-extinction promoted the diversification of larger body sizes, while brain and neocortex sizes lagged behind. The independent increase in PEQ in Eocene crown groups is related to the expansion of the neocortex, possibly a response to ecological specialization as environments changed, long after the extinction. Funding Sources Marie Sklodowska-Curie Actions, European Research Council Starting Grant, National Science Foundation, Belgian Science Policy Office, DMNS No Walls Community Initiative.
Located in Library / RBINS Staff Publications 2020
Article Reference Brawn before brains in placental mammals after the end-Cretaceous extinction
Mammals are the most encephalized vertebrates, with the largest brains relative to body size. Placental mammals have particularly enlarged brains, with expanded neocortices for sensory integration, the origins of which are unclear. We used computed tomography scans of newly discovered Paleocene fossils to show that contrary to the convention that mammal brains have steadily enlarged over time, early placentals initially decreased their relative brain sizes because body mass increased at a faster rate. Later in the Eocene, multiple crown lineages independently acquired highly encephalized brains through marked growth in sensory regions. We argue that the placental radiation initially emphasized increases in body size as extinction survivors filled vacant niches. Brains eventually became larger as ecosystems saturated and competition intensified.
Located in Library / RBINS Staff Publications 2022 OA
Article Reference Bronze Age subsistence along the southern coast of Yemen: the example of al-Uriyash
Located in Library / RBINS Staff Publications 2023
Article Reference Brucity/Parking 58 : Un ancien quai de Senne (XVe siècle) (RBC/BHG)
Located in Library / RBINS Staff Publications 2020
Article Reference Bruniquel-Grotte. Fouille programmée (2015)
Located in Library / RBINS Staff Publications 2021