Skip to content. | Skip to navigation

Personal tools

You are here: Home
972 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Inproceedings Reference Cranial morphology of Khirtharia inflata (Raoellidae, Artiodactyla)
Raoellidae are extinct small-sized semiaquatic artiodactyls that are the closest relatives to crown clade Cetacea. They display morphological features showing the transition between terrestrial and aquatic lifestyles and therefore bring crucial information to understand the earliest steps of cetacean evolution. Raoellid cranial morphology, including the ear region and endocranial morphology, has been documented using cranial remains referred to Indohyus indirae from the Kalakot area, Jammu and Kashmir in India. The study of these specimens highlighted that several cetacean features are already present in raoellids. The previously available Indohyus material was very deformed, preventing access to quantitative data and leading to potential misinterpretations. We describe new undeformed cranial material from the Kalakot area, documenting another raoellid species, Khirtharia inflata. The new observations allow us to complete our knowledge of raoellid cranial morphology, including the original shape of the cranium and brain endocast and to confirm the specificities of raoellid morphology within Artiodactyla. We further provide the first quantitative data for the different brain components and show that Raoellidae had low encephalization and neocorticalization values, much lower than cetaceans and close to early diverging, primitive, dichobunoid artiodactyls. Reconstruction of the blood sinuses above the cerebellum supports the previous “intraosseous” hypothesis about the initial steps of the development of the caudal venous rete mirabile in cetaceans. The presence of several cetacean cranial features in Raoellidae, such as the peculiar shape of the frontal, the strong postorbital constriction, the periotic involucrum, or the elongation of the olfactory bulbs, questions the definition of the Cetacea clade.
Located in Library / RBINS Staff Publications 2023 OA
Article Reference Revision of the Eurybrachidae (XVI). The Australian Olonia rubicunda (Walker, 1851): Description of the male, distribution and host plants (Hemiptera: Fulgoromorpha: Eurybrachidae)
Located in Library / RBINS Staff Publications 2020
Article Reference A New Mammal Skull from the Late Cretaceous of Romania and Phylogenetic Affinities of Kogaionid Multituberculates
Among the Late Cretaceous fossil sites of Europe, only those from the so-called “Haţeg Island” in Transylvania, western Romania, are remarkable by their abundance in mammal remains. Curiously, all of them belong to a single family of multituberculates, the Kogaionidae, one of the rare families that survived the Cretaceous-Paleogene mass extinction in Europe. Kogaionids are mostly represented by isolated teeth except for three partial large skulls from the Maastrichtian Sânpetru Formation of the Haţeg Basin that have been described from the Sânpetru locality as Kogaionon ungureanui and from the Pui locality as Barbatodon transylvanicus and Litovoi tholocephalos. Here we report for the first time the discovery of a partial skull associated with p4 of a small-sized kogaionid from the Nălaţ-Vad locality in the Sânpetru Formation that we refer to Kogaionon radulescui, sp. nov. An updated phylogenetic analysis, including seven Maastrichtian and Paleocene kogaionids is performed and confirms that Kogaionidae is a monophyletic clade at the base of Cimolodonta. Kogaionon differs from Barbatodon in its narrower snout, proportionally smaller P1, narrower anterior part of P4 with four similar-sized cusps in the middle row, more squared or rounded M1 with an anteroposteriorly longer lingual row, and shorter p4 (at least for K. radulescui). Litovoi tholocephalos is here considered to be a junior synonym of B. transylvanicus. Despite their Maastrichtian age, the very simple and conservative dental morphology of these Romanian kogaionids suggests that they originated from an eobaatarid-like ancestor dispersing from Asia or possibly already existing in Europe between the Barremian and Albian, 40 to 55 Ma earlier.
Located in Library / RBINS Staff Publications 2021
Article Reference A new partial skeleton of Kryptobaatar from the Upper Cretaceous of Bayan Mandahu (Inner Mongolia, China) relaunch the question about variability in djadochtatherioid multituberculate mammals
A new well-preserved partial skeleton of the djadochtatheriid multituberculate Kryptobaatar is here described from the Campanian Bayan Mandahu Formation of the southern Gobi Basin in Inner Mongolia, China. We refer to it as Kryptobaatar sp. because it presents characters that are specific to Kryptobaatar dashzevegi and others specific to Kryptobaatar mandahuensis, as well as characters of its own. When those taxa are incorporated into a phylogenetic analysis of the Djadochtatherioidea, the Kryptobaatar species appear to be paraphyletic. This raises again questions about the high intraspecific variability in some multituberculates. Based on a comparison with the published specimens, we conclude that K. mandahuensis is a valid species, close to but distinct from K. dashzevegi. Our results also suggest that endemism alone in the Gobi Basin is not the cause of the high variability observed in the genus Kryptobaatar. But the impact of a possible difference in age or paleoenvironment between the different Kryptobaatar-bearing sites of the Gobi Desert is, for the moment, not possible to test in the current state of knowledge.
Located in Library / RBINS Staff Publications 2022
Article Reference Foreword for the thematic volume of the PalEurAfrica project international symposium Evolution and paleoenvironment of early modern vertebrates during the Paleogene
-
Located in Library / RBINS Staff Publications 2021
Article Reference Original articleSystematics and diversity of the giant soft-shelled turtles (Cryptodira,Trionychidae) from the earliest Eocene of Belgium
In 1909, the famous paleontologist Louis Dollo identified two putative new species of giant soft-shelled turtles from the lowest Eocene record of Belgium, ‘Trionyx erquelinnensis’ and ‘Trionyx levalensis’, from Erquelinnes and Leval, respectively. However, these proposals did not meet the requirements of the International Code of Zoological Nomenclature, so they were considered as nomina nuda. The information on these specimens or about any other specimen of this lineage of giant turtles from the Belgian record is currently extremely limited. Relatively scarce material from giant trionychids has been described for the lower Eocene record of other European regions. Considering the available information, all the European material has recently been recognized as belonging to the genus Axestemys, which has a North American origin, and possibly attributable to a single species, Axestemys vittata, which currently lacks a diagnosis. Numerous and well-preserved Belgian specimens are deposited in the Royal Belgian Institute of Natural Sciences. In addition to the cited individuals from Erquelinnes and Leval, additional specimens from both localities, as well as others from Orp-le-Grand, are part of this collection. These specimens, found between the decades of 1910 and 1930, have been recently restored, and their study is carried out here. The presence of Axestemys vittata in Belgium (in Leval and Orp-le-Grand) is confirmed. Knowledge about this species is significantly improved, and a diagnosis is proposed. However, the hypothesis proposed by Dollo is here confirmed, this species being not the only identified in the Belgian record. So, Axestemys erquelinnensis nov. sp. is defined based on the carapace from Erquelinnes known by Dollo, suggesting that the genus probably reached Europe during the Paleocene Eocene Thermal Maximum.
Located in Library / RBINS Staff Publications 2021
Article Reference Advancing the Catalogue of the World’s Natural History Collections
Information about natural history collections helps to map the complex landscape of research resources and assists researchers in locating and contacting the holders of specimens. Collection records contribute to the development of a fully interlinked biodiversity knowledge graph (Page 2016), showcasing the existence and importance of museums and herbaria and supplying context to available data on specimens. These records also potentially open new avenues for fresh use of these collections and for accelerating their full availability online.A number of international (e.g., Index Herbariorum, GRSciColl) regional (e.g. DiSSCo and CETAF) national (e.g., ALA and the Living Atlases, iDigBio US Collections Catalog) and institutional networks (e.g., The Field Museum) separately document subsets of the world's collections, and the Biodiversity Information Standards (TDWG) Collection Descriptions Interest Group is actively developing standards to support information sharing on collections. However, these efforts do not yet combine to deliver a comprehensive and connected view of all collections globally.The Global Biodiversity Information Facility (GBIF) received funding as part of the European Commission-funded SYNTHESYS+ 7 project to explore development of a roadmap towards delivering such a view, in part as a contribution towards the establishment of DiSSCo services within a global ecosystem of collection catalogues. Between 17 and 29 April 2020, a coordination team comprising international representatives from multiple networks ran Advancing the Catalogue of the World’s Natural History Collections, a fully online consultation using the GBIF Discourse forum platform to guide discussion around 26 consultation topics identified in an initial Ideas Paper (Hobern et al. 2020). Discussions included support for contributions in Spanish, Chinese and French and were summarised daily throughout the consultation.The consultation confirmed broad agreement around the needs and goals for a comprehensive catalogue of the world’s natural history collections, along with possible strategies to overcome the challenges. This presentation will summarise the results and recommendations.
Located in Library / RBINS Staff Publications 2020
Article Reference A large meteoritic event over Antarctica ca. 430 ka ago inferred from chondritic spherules from the Sør Rondane Mountains
Large airbursts, the most frequent hazardous impact events, are estimated to occur orders of magnitude more frequently than crater-forming impacts. However, finding traces of these events is impeded by the difficulty of identifying them in the recent geological record. Here, we describe condensation spherules found on top of Walnumfjellet in the Sør Rondane Mountains, Antarctica. Affinities with similar spherules found in EPICA Dome C and Dome Fuji ice cores suggest that these particles were produced during a single-asteroid impact ca. 430 thousand years (ka) ago. The lack of a confirmed crater on the Antarctic ice sheet and geochemical and 18O-poor oxygen isotope signatures allow us to hypothesize that the impact particles result from a touchdown event, in which a projectile vapor jet interacts with the Antarctic ice sheet. Numerical models support a touchdown scenario. This study has implications for the identification and inventory of large cosmic events on Earth.
Located in Library / RBINS Staff Publications 2021
Article Reference Pyrops auratus, a new lanternfly from the Philippines and taxonomic note on Bornean P. gunjii (Satô & Nagai, 1994) (Hemiptera: Fulgoromorpha: Fulgoridae)
Located in Library / RBINS Staff Publications 2021
Article Reference First record of a Lessepsian migrant: the sea cucumber Holothuria (Theelothuria) hamata Pearson, 1913
First record of a Lessepsian migrant: the sea cucumber Holothuria (Theelothuria) hamata Pearson, 1913. A single specimen of the Indo-West Pacific sea cucumber Holothuria (Theelothuria) hamata Pearson, 1913 has been captured in 2017 in the Mediterranean Sea, Turkey, Iskenderun Bay, at 30 m depth. This specimen is here described, and the taxonomy of the species is briefly discussed. Despite the lack of timed biogeographic evidence, we here argue that H. hamata is a Lessepsian migrant; the first in its genus and only the second holothuroid.
Located in Library / RBINS Staff Publications 2019