Skip to content. | Skip to navigation

Personal tools

You are here: Home
1516 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Inproceedings Reference Sulfidic Habitats in the Frasassi Caves, Italy: A Hotspot of Subterranean Biodiversity
Located in Library / RBINS Staff Publications 2022 OA
Article Reference Stable isotopes reveal patterns of diet and mobility in the last Neandertals and first modern humans in Europe
Correlating cultural, technological and ecological aspects of both Upper Pleistocene modern humans (UPMHs) and Neandertals provides a useful approach for achieving robust predictions about what makes us human. Here we present ecological information for a period of special relevance in human evolution, the time of replacement of Neandertals by modern humans during the Late Pleistocene in Europe. Using the stable isotopic approach, we shed light on aspects of diet and mobility of the late Neandertals and UPMHs from the cave sites of the Troisième caverne of Goyet and Spy in Belgium. We demonstrate that their diet was essentially similar, relying on the same terrestrial herbivores, whereas mobility strategies indicate considerable differences between Neandertal groups, as well as in comparison to UPMHs. Our results indicate that UPMHs exploited their environment to a greater extent than Neandertals and support the hypothesis that UPMHs had a substantial impact not only on the population dynamics of large mammals but also on the whole structure of the ecosystem since their initial arrival in Europe.
Located in Library / RBINS Staff Publications 2019
Article Reference Aquatic fauna from the Takarkori rock shelter reveals the Holocene central Saharan climate and palaeohydrography
The abundant faunal remains from the Takarkori rock shelter in the Tadrart Acacus region of southwestern Libya are described. The material that covers the period between 10,200 to 4650 years cal BP illustrates the more humid environmental conditions in the Central Sahara during early and middle Holocene times. Particular attention is focussed on the aquatic fauna that shows marked diachronic changes related to increasing aridification. This is reflected in the decreasing amount of fish remains compared to mammals and, within the fish fauna, by changes through time in the proportion of the species and by a reduction of fish size. The aquatic fauna can, in addition, be used to formulate hypotheses about the former palaeohydrographical network. This is done by considering the possible location of pre-Holocene relic populations combined with observations on the topography and palaeohydrological settings of the Central Sahara.
Located in Library / RBINS Staff Publications 2020
Article Reference Ecology and evolution of chlamydial symbionts of arthropods
Located in Library / RBINS Staff Publications 2022 OA
Article Reference A Novel Widespread MITE Element in the Repeat-Rich Genome of the Cardinium Endosymbiont of the Spider Oedothorax gibbosus
Located in Library / RBINS Staff Publications 2022 OA
Article Reference Progressive spread of chromosomal inversions blends the role of colonization and evolution in a parallel Galápagos beetle radiation
Located in Library / RBINS Staff Publications 2022 OA
Article Reference 3D subsurface characterisation of the Belgian Continental Shelf: a new voxel modelling approach
Located in Library / RBINS Staff Publications 2019
Article Reference Validating a biophysical dispersal model with the early life-history traits of common sole (Solea solea L.)
Larval dispersal and juvenile survival are crucial in determining variation in recruitment, stock size and adult distribution of commercially important fish. This study investigates the dispersal of early-life stages of common sole (Solea solea L.) in the southern North Sea, both empirically and through modeling. Age at different life-history events of juvenile flatfish sampled along the coasts of Belgium, the Netherlands and the United Kingdom in 2013, 2014 and 2016, was determined through the counting of daily growth rings in the otoliths. Juveniles captured between August and October were estimated to be on average 140 days old with an average pelagic larval duration of 34 days. The hatching period was estimated between early April and mid-May followed by arrival and settlement in the nurseries between May and mid-June. Growth rates were higher off the Belgian coast than in the other nursery areas, especially in 2013, possibly due to a post-settlement differentiation. Empirical pelagic larval duration and settlement distributions were compared with the LARVAE&CO larval dispersal model, which combines local hydrodynamics in the North Sea with sole larval behavior. Yearly predicted and observed settlement matched partially, but the model estimated a longer pelagic phase. The observations fitted even better with the modelled average (1995–2015) distribution curves. Aberrant results for the small juvenile sole sampled along the UK coast in March 2016, led to the hypothesis of a winter disruption in the deposition of daily growth rings, potentially related to starvation and lower food availability. The similarities between measured and modelled distribution curves cross-validated both types of estimations and accredited daily ageing of juveniles as a useful method to calibrate biophysical models and to understand early-life history of fish, both important tools in support of efficient fisheries management strategies.
Located in Library / RBINS Staff Publications 2020
Article Reference A proposed solution to a lengthy dispute: what is Leptinaria (uni)lamellata (Mollusca, Gastropoda, Achatinidae)?
Located in Library / RBINS Staff Publications 2020
Inproceedings Reference Advances in high-resolution paleoclimate reconstructions using growth experiments, age modelling and clumped isotope analyses
Located in Library / RBINS Staff Publications 2021