Skip to content. | Skip to navigation

Personal tools

You are here: Home
1610 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Assessing the radiocarbon freshwater reservoir effect for a Northwest-European river system (the Schelde basin, Belgium)
The freshwater reservoir effect (FRE) for the Schelde basin (Belgium) is assessed for the Roman, Medieval and early Post-medieval periods by comparing historical and archaeological dates from individual archaeological deposits with radiocarbon dates on the remains of freshwater fish and terrestrial mammals from those same deposits. This is the first time such an assessment has been attempted for the Schelde basin. The FRE offsets prove to be substantial for the historical periods considered. They also differ markedly between fish species and between size classes of a single species. These observations have implications for the evaluation of radiocarbon dates obtained on archaeological remains of humans (and animals) with a substantial amount of freshwater fish into their diet. The data obtained in this study suggest that it will not be easy to correct for any FRE.
Located in Library / RBINS Staff Publications 2018
Inproceedings Reference Assessing the risk of incorrect identifications when DNA barcoding flies from forensic cases
Located in Library / RBINS Staff Publications
Inproceedings Reference Assessing Vertical Elevation Changes of Coastal Areas in Southern Chile to Improve The Understanding of Their Paleotsunami Sedimentary Records
Located in Library / RBINS Staff Publications 2017
Article Reference Assessment of PRISMA water reflectance using autonomous hyperspectral radiometry
Hyperspectral remote sensing reflectance (Rrs) derived from PRISMA in the visible and infrared range was evaluated for two inland and coastal water sites using above-water in situ reflectance measurements from autonomous hyper- and multispectral radiometer systems. We compared the Level 2D (L2D) surface reflectance, a standard product distributed by the Italian Space Agency (ASI), as well as outputs from ACOLITE/DSF, now adapted for processing of PRISMA imagery. Near-coincident Sentinel-3 OLCI (S3/OLCI) observations were also compared as it is a frequent data source for inland and coastal water remote sensing applications, with a strong calibration and validation record. In situ measurements from two optically diverse sites in Italy, equipped with fixed autonomous hyperspectral radiometer systems, were used: the REmote Sensing for Trasimeno lake Observatory (RESTO), positioned in a shallow and turbid lake in Central Italy, and the Acqua Alta Oceanographic Tower (AAOT), located 15 km offshore from the lagoon of Venice in the Adriatic Sea, which is characterised by clear to moderately turbid waters. 20 PRISMA images were available for the match-up analysis across both sites. Good performance of L2D was found for RESTO, with the lowest relative (Mean Absolute Percentage Difference, MAPD  25\%) and absolute errors (Bias  0.002) in the bands between 500 and 680 nm, with similar performance for ACOLITE. The lowest median and interquartile ranges of spectral angle (SA  8°) denoted a more similar shape to the RESTO in situ data, indicating pigment absorption retrievals should be possible. ACOLITE showed better statistical performance at AAOT compared to L2D, providing R2  0.5, Bias  0.0015 and MAPD  35\%, in the range between 470 and 580 nm, i.e. in the spectral range with highest reflectances. The addition of a SWIR based sun-glint correction to the default atmospheric correction implemented in ACOLITE further improved performance at AAOT, with lower uncertainties and closer spectral similarity to the in situ measurements, suggesting that ACOLITE with glint correction was able to best reproduce the spectral shape of in situ data at AAOT. We found good results for PRISMA Rrs retrieval in our study sites, and hence demonstrated the use of PRISMA for aquatic ecosystem mapping. Further studies are needed to analyse performance in other water bodies, over a wider range of optical properties.
Located in Library / RBINS Staff Publications 2022
Article Reference Atelestidae (Diptera: Empidoidea) from the Botanic Garden Jean Massart with a first record from Belgium of the very rare Meghyperus sudeticus Loew, 1850 and an update on the Belgian Atelestidae
Located in Library / RBINS Staff Publications 2023 OA
Article Reference Ath/Ghislanghien : vestiges protohistoriques dans le parc d’activité économique Orientis III.
Imprimé avril 2022
Located in Library / RBINS Staff Publications 2022
Article Reference Atmospheric CO2 flux from mangrove surrounding waters.
The partial pressure of CO 2 (pCO2) was measured at daily and weekly time scales in the waters surrounding mangrove forests in Papua New Guinea, the Bahamas and India. The pCO2 values range from 380 to 4800 æatm. These data, together with previously published data, suggest that overall oversaturation of CO2 with respect to atmospheric equilibrium in surface waters is a general feature of mangrove forests, though the entire ecosystems (sediment, water and vegetation) are probably sinks for atmospheric CO2. The computed CO2 fluxes converge to about +50 mmolC m -2 day-1. If this conservative value is extrapolated for worldwide mangrove ecosystems, the global emission of CO2 to the atmosphere is about 50 106 tC year-1. Based on this tentative estimate, mangrove waters appear to be regionally a significant source of CO2 to the atmosphere and should be more thoroughly investigated, especially at seasonal time scale.
Located in Library / No RBINS Staff publications
Article Reference Atmospheric correction of Landsat-8 Imagery using Seadas. Submitted for the proceedings of the Sentinel-2 for Science Workshop held in Frascati, Italy, 20-23 May 2014.
Located in Library / RBINS Staff Publications
Article Reference Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters
The performance of different atmospheric correction algorithms for the Ocean and Land Colour Instrument (OLCI) on board of Sentinel-3 (S3) is evaluated for retrieval of water-leaving radiance reflectance, and derived parameters chlorophyll-a concentration and turbidity in turbid coastal waters in the Belgian Coastal Zone (BCZ). This is performed using in situ measurements from an autonomous pan-and-tilt hyperspectral radiometer system (PANTHYR). The PANTHYR provides validation data for any satellite band between 400 and 900 nm, with the deployment in the BCZ of particular interest due to the wide range of observed Near-InfraRed (NIR) reflectance. The Dark Spectrum Fitting (DSF) atmospheric correction algorithm is adapted for S3/OLCI processing in ACOLITE, and its performance and that of 5 other processing algorithms (L2-WFR, POLYMER, C2RCC, SeaDAS, and SeaDAS-ALT) is compared to the in situ measured reflectances. Water turbidities across the matchups in the Belgian Coastal Zone are about 20–100 FNU, and the overall performance is best for ACOLITE and L2-WFR, with the former providing lowest relative (Mean Absolute Relative Difference, MARD 7–27\%) and absolute errors (Mean Average Difference, MAD -0.002, Root Mean Squared Difference, RMSD 0.01–0.016) in the bands between 442 and 681 nm. L2-WFR provides the lowest errors at longer NIR wavelengths (754–885 nm). The algorithms that assume a water reflectance model, i.e. POLYMER and C2RCC, are at present not very suitable for processing imagery over the turbid Belgian coastal waters, with especially the latter introducing problems in the 665 and 709 nm bands, and hence the chlorophyll-a and turbidity retrievals. This may be caused by their internal model and/or training dataset not being well adapted to the waters encountered in the BCZ. The 1020 nm band is used most frequently by ACOLITE/DSF for the estimation of the atmospheric path reflectance (67\% of matchups), indicating its usefulness for turbid water atmospheric correction. Turbidity retrieval using a single band algorithm showed good performance for L2-WFR and ACOLITE compared to PANTHYR for e.g. the 709 nm band (MARD 15 and 17\%), where their reflectances were also very close to the in situ observations (MARD 11\%). For the retrieval of chlorophyll-a, all methods except C2RCC gave similar performance, due to the RedEdge band-ratio algorithm being robust to typical spectrally flat atmospheric correction errors. C2RCC does not retain the spectral relationship in the Red and RedEdge bands, and hence its chlorophyll-a concentration retrieval is not at all reliable in Belgian coastal waters. L2-WFR and ACOLITE show similar performance compared to in situ radiometry, but due to the assumption of spatially consistent aerosols, ACOLITE provides less noisy products. With the superior performance of ACOLITE in the 490–681 nm wavelength range, and smoother output products, it can be recommended for processing of S3/OLCI data in turbid waters similar to those encountered in the BCZ. The ACOLITE processor for OLCI and the in situ matchup dataset used here are made available under an open source license.
Located in Library / RBINS Staff Publications 2021
Techreport Reference Attraction of harbour porpoises to offshore wind farms: what can be expected? In: S. Degraer, R. Brabant and B. Rumes (Eds.) Environmental impacts of the offshore windfarms in the Belgian part of the North Sea: learning from the past to optimize future m
Located in Library / RBINS Staff Publications