Sheep was one of the first domesticated animals in Neolithic West Eurasia. The zooarchaeological record suggests that domestication first took place in Southwest Asia, although much remains unresolved about the precise location(s) and timing(s) of earliest domestication, or the post-domestication history of sheep. Here, we present 24 new partial sheep paleogenomes, including a 13,000-year-old Epipaleolithic Central Anatolian wild sheep, as well as 14 domestic sheep from Neolithic Anatolia, two from Neolithic Iran, two from Neolithic Iberia, three from Neolithic France, and one each from Late Neolithic/Bronze Age Baltic and South Russia, in addition to five present-day Central Anatolian Mouflons and two present-day Cyprian Mouflons. We find that Neolithic European, as well as domestic sheep breeds, are genetically closer to the Anatolian Epipaleolithic sheep and the present-day Anatolian and Cyprian Mouflon than to the Iranian Mouflon. This supports a Central Anatolian source for domestication, presenting strong evidence for a domestication event in SW Asia outside the Fertile Crescent, although we cannot rule out multiple domestication events also within the Neolithic Fertile Crescent. We further find evidence for multiple admixture and replacement events, including one that parallels the Pontic Steppe-related ancestry expansion in Europe, as well as a post-Bronze Age event that appears to have further spread Asia-related alleles across global sheep breeds. Our findings mark the dynamism of past domestic sheep populations in their potential for dispersal and admixture, sometimes being paralleled by their shepherds and in other cases not.
Located in
Library
/
RBINS Staff Publications 2023
A number of localities in Transylvania (Romania) have yielded vertebrate microfossil remains. Two localities have been stratigraphically and biochronologically dated to the late Eocene: i.e., Treznea and Bociu. The remaining three localities are dated to the early Oligocene: Mera, Cetățuie, and Suceag. The study of cricetid rodents corroborates the presence of this family in Eastern Europe during the late Eocene, as evidenced by the species Witenia sp., Bustrania cf. B. dissimile , and Eocricetodon cf. Eo. meridionalis. The cricetids identified in the sites of the early Oligocene age show a complete turnover and a notable increase in species richness following the Eocene/Oligocene boundary, with: Eucricetodon aff. Eu. huerzeleri, Tenuicricetodon arcemis gen. et sp. nov., Pseudocricetodon cf. Ps. montalbanensis, Paracricetodon cf. Pa. walgeri, Paracricetodon kavakderensis, Paracricetodon aff. Pa. stojonovici, and Paracricetodon wentgesi. In the context of the wider biogeographic history of Europe, these new discoveries indicate that Cricetidae arrived in Europe during at least two successive migrations from Asia in the late Eocene and earliest Oligocene. These migrations may have occurred via two different migration pathways through the north and south of Europe. In a second phase, Cricetidae arriving by the northern passway spread throughout Europe, whereas Cricetidae that arrived by the southern passway remained restricted to the central and southeastern Europe. The observations made on the Cricetidae allow for the proposal of a new, more general, scenario for the Eocene–Oligocene transition on a European scale, which is more complex than the “Grande Coupure” sensu stricto as initially proposed by Stehlin in 1909.
Located in
Library
/
RBINS Staff Publications 2025 OA