One of the largest isotopic datasets of the ancient Eastern Mediterranean region is evaluated, based on plants (n = 410), animals (n = 210) and humans (n = 16) from Tell Tweini (Syria). Diachronic analysis of plant and faunal specimens from four main periods of occupation: Early Bronze Age (2600–2000 BC), Middle Bronze Age (2000–1600 BC), Late Bronze Age (1600–1200 BC) and Iron Age (1200–333 BC) were investigated. Mean Δ13C results from seven plant species reveal emmer and free threshing wheat, olives, bitter vetch, rye grass and barley were adequately or well-watered during all periods of occupation. The grape Δ13C results suggest excellent growing conditions and particular care for its cultivation. The δ15N results indicate that especially the emmer and free threshing wheats received some manure inputs throughout the occupation sequence, while these were likely further increased during the Iron Age, encompassing also the olive groves and grape vineyards. Generally, domestic animals (cattle, sheep, goats) had C3 terrestrial diets and were kept together in similar environments. However, some animals consumed significant amounts of marine or C4 plants, possibly from disturbed habitats due to land use pressure or salt tolerant grasses and shrubs from wetland environments, which were recorded in the direct vicinity of the site. Middle Bronze Age humans consumed a C3 terrestrial diet with no measurable input from C4, freshwater or marine protein sources. Interestingly, the human diet was relatively low in animal protein and appears comparable to what is considered today a typical Mediterranean diet consisting of bread (wheat/barley), olives, grapes, pulses, dairy products and small amounts of meat. The combined isotopic analysis of plants, animals and humans from Tell Tweini represents unbroken links in the food chain which create unparalleled opportunities to enhance our current understanding of environmental conditions, climate change and lifeways in past populations from the Eastern Mediterranean.
Located in
Library
/
RBINS Staff Publications 2024
The widespread view of taxonomy as an essentially retrogressive and outmoded science unable to cope with the current biodiversity crisis stimulated us to analyze the current status of cataloguing global algal diversity. Contrary to this largely pessimistic belief, species description rates of algae through time and trends in the number of active taxonomists, as revealed by the web resource AlgaeBase, show a much more positive picture. More species than ever before are being described by a large community of algal taxonomists. The lack of any decline in the rate at which new species and genera are described, however, is indicative of the large proportion of undiscovered diversity and bears heavily on any prediction of global algal species diversity and the time needed to catalogue it. The saturation of accumulation curves of higher taxa (family, order, and classes) on the other hand suggest that at these taxonomic levels most diversity has been discovered. This reasonably positive picture does not imply that algal taxonomy does not face serious challenges in the near future. The observed levels of cryptic diversity in algae, combined with the shift in methods used to characterize them, have resulted in a rampant uncertainty about the status of many older species. As a consequence, there is a tendency in phycology to move gradually away from traditional names to a more informal system whereby clade-, specimen- or strain-based identifiers are used to communicate biological information. Whether these informal names for species-level clades represent a temporary situation stimulated by the lag between species discovery and formal description, or an incipient alternative or parallel taxonomy, will be largely determined by how well we manage to integrate historical collections into modern taxonomic research. Additionally, there is a pressing need for a consensus about the organizational framework to manage the information about algal species names. An eventual strategy should preferably come out of an international working group that includes the various databases as well as the various phycological societies. In this strategy, phycologists should link up to major international initiatives that are currently being developed, such as the compulsory registration of taxonomic and nomenclatural acts and the introduction of Life Science Identifiers.
Located in
Library
/
RBINS Staff Publications