Satellites have generated extensive data of remote sensing reflectance spectra (Rrs(λ)) covering diverse water classes or types across global waters. Spectral classification of satellite Rrs(λ) data allows for the distinguishing and grouping of waters with characteristic bio-optical/biogeochemical features that may influence the productivity of a given water body. This study reports new satellite water class products (Level-2 and Level-3) from the Visible Infrared Imaging Radiometer Suite (VIIRS). We developed and implemented a hyperspectral scheme that accounts for the Rrs(λ) spectral shapes and globally resolves oceanic, coastal, and inland waters into 23 water classes. We characterized the light absorption and scattering coefficients, chlorophyll-a concentration, diffuse attenuation coefficient, and suspended particulate matter for individual water classes. It is shown that the water classes are separable by their distinct bio-optical and biogeochemical properties. Furthermore, validation result suggests that the VIIRS water class products are accurate globally. Finally, we examined the spatial and temporal variability of the water classes in case studies for a demonstration of applications. The water class data in open oceans reveal that the subtropical ocean gyres have experienced dramatic expansion over the last decade. In addition, the water class data appear to be a valuable (and qualitative) indicator for water quality in coastal and inland waters with compelling evidence. We stress that this new satellite product is an excellent addition to the aquatic science database, despite the need for continuous improvement toward perfection.
Located in
Library
/
RBINS Staff Publications 2022
The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived1,2,3,4,5,6,7,8. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000–30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located.
Located in
Library
/
RBINS Staff Publications 2022