Background: Lake Tana is the largest lake in Ethiopia and the source of the Blue Nile. The lake harbours unique endemic cyprinid fish species, as well as the commercially important endemic Nile tilapia subspecies Oreochromis niloticus tana and the North African catfish Clarias gariepinus. Its endemicity, especially within the Labeobarbus radiation, its conservation importance and its economic indispensability attract scientific interest to the lake’s ichthyofauna. Fish parasites of Lake Tana, however, are hitherto poorly known, and no formal report exists on its monogenean flatworms. For sustainable aquaculture and fisheries development, it is essential to study monogenean fish parasites in these economically most important fish species. Moreover, it remains to be verified whether this unique ecosystem and its endemicity gave rise to a distinct parasite fauna as well. Results: Nile tilapia and North African catfish hosts were collected from Lake Tana in 2013. Nine species of monogenean parasites of two orders, Gyrodactylidea Bychowsky, 1937 and Dactylogyridea Bychowsky, 1937, were recovered. Gyrodactylus gelnari Přikrylová, Blažek & Vanhove, 2012, Macrogyrodactylus clarii Gussev, 1961, Quadriacanthus aegypticus El-Naggar & Serag, 1986 and two undescribed Quadriacanthus species were recovered from C. gariepinus. Oreochromis niloticus tana hosted Cichlidogyrus cirratus Paperna, 1964, C. halli (Price & Kirk, 1967), C. thurstonae Ergens, 1981 and Scutogyrus longicornis (Paperna & Thurston, 1969). Conclusions: Except for M. clarii, all species represent new records for Ethiopia. This first study on the monogenean fauna of Lake Tana revealed that the lake’s North African catfish, as well as its endemic Nile tilapia subspecies, harbour parasites that are known from these host species elsewhere in Africa.
Located in
Library
/
RBINS Staff Publications 2016
Placentals are by far the most diverse group of mammals today, with 6,111 species. They occupy a plethora of ecological niches worldwide and display a broad range of body masses. The vacant niches left by non-avian dinosaurs and other vertebrates after the end-Cretaceous mass extinction provided a crucial opportunity for placentals to diversify; however, intrinsic factors also may have played a role. The general neurosensory organization exhibited by extant mammals has been maintained since the early Mesozoic. Much later, early members of extant placental groups from the Eocene and Oligocene including rodents, primates and artiodactyls—display neurosensory innovations such as a proportionally larger neocortex and higher encephalization quotient compared to their Mesozoic ancestors. However, between these two well-known intervals of mammalian neurosensory evolution, there is a gap: few studies have focused on the brains of the oldest placentals living during the early Paleogene, in the Paleocene. We focus on the ‘Arctocyonidae’, a likely polyphyletic group of ‘condylarths’, including species potentially implicated in the origins of some extant orders. ‘Arctocyonids’ were among the first placentals to diversify after the end-Cretaceous extinction. They have been reconstructed as small-tomedium sized, mainly omnivorous and terrestrial. We obtained cranial and bony labyrinth endocasts for Chriacus baldwini and C. pelvidens from the lower Paleocene of the San Juan Basin, New Mexico, and Arctocyon primaevus from the upper Paleocene of the Paris Basin, France, via high resolution computed tomography. Both share plesiomorphic brain features with previously described early Paleocene mammals. They have small lissencephalic brains with an EQ range of 0.12-0.43 and 0.16-0.31, respectively. The olfactory bulbs and the paraflocculi represent 6% and less than 1% of the total endocranial volume, respectively and the neocortical height ratio represents ~25% of the total endocranial height. Based on cochlear measurements, both taxa had hearing capabilities similar to those of extant wild boars. Agility scores between 2 and 3 were obtained for both taxa, similar to the modern American badger and crab-eating raccoon, suggesting that C. pelvidens and A. primaevus were ambulatory. These results support growing evidence that early placentals had lower EQs and less expanded neocortices compared to Eocene and later taxa, potentially indicating that high intelligence was not key to the placental radiation after the End-Cretaceous extinction. Grant Information: Marie Sklodowska-Curie Actions: Individual Fellowship, European Research Council Starting Grant, National Science Foundation, and Belgian Science Policy Office.
Located in
Library
/
RBINS Staff Publications 2019