-
Earliest Mysticete from the Late Eocene of Peru Sheds New Light on the Origin of Baleen whales.
-
Located in
Library
/
RBINS Staff Publications 2017
-
Early and High Medieval (c. 650 AD - 1250 AD) charcoal production and its impact on woodland composition in the Northwest-European lowland: a study of charcoal pit kilns from Sterrebeek (Central Belgium).
-
Located in
Library
/
RBINS Staff Publications 2021
-
Early and Middle Holocene human occupation of the Egyptian Eastern Desert: Sodmein Cave
-
Located in
Library
/
RBINS Staff Publications
-
Early Byzantine fish consumption and trade revealed by archaeoichthyology and isotopic analysis at Sagalassos, Turkey
-
We document the dietary and economic role of fish at Sagalassos, a town in ancient Pisidia (southwest Turkey) for the Early Byzantine period (c. 550 – 700 CE) through a detailed analysis of animal bones and stable isotopes. The role of fish in the diet is quantified, for the first time, based on large samples of sieved remains retrieved during the excavation of a number of spaces in an urban residence. The table and kitchen refuse from the mansion shows that fish was a regular part of the diet. However, past isotopic work focused on human individuals excavated in the city’s necropolises, slightly postdating the faunal remains examined, did not reflect this consumption of aquatic food. The studied assemblage comprises at least 12 different fish taxa, including five marine species, a Nilotic fish and six Anatolian freshwater species. Since the origin of the freshwater fishes could not be unambiguously determined by zoogeography alone, we analyzed carbon, nitrogen and sulphur stable isotope ratios in archaeological fish bones from Sagalassos as well as in bones of modern fish collected at different sites in Turkey. We show that most freshwater fish, i.e., all cyprinid species, came from Lake Eğirdir. No evidence was found for fish from the local Aksu River basin. The exact origin of pike, which account for 3% of all freshwater fish, could not be directly determined due to a shortage of modern comparative data. Using the data obtained on the provenance of the fish, the ancient trade routes possibly used in the Early Byzantine period are reconstructed using a combination of archaeological, numismatic and historical data on past commercial relations.
Located in
Library
/
RBINS Staff Publications 2023
-
Early cat taming in Egypt: a correction
-
A cat skeleton from a Predynastic burial in Egypt that was previously labelled as Felis silvestris is reidentified as Felis chaus. This means that the previous claim needs to be withdrawn that the specimen represents early evidence for taming of Felis silvestris that ultimately led to domestication. However, the statement that the small felid has been held in captivity for several weeks, based on the presence of healed fractures, is still valid.
Located in
Library
/
RBINS Staff Publications
-
Early diversification of seeds and seed-like structures
-
Located in
Library
/
RBINS Staff Publications
-
Early Eocene (Ypresian) continental vertebrate assemblage from India, with description of a new anthracobunid (Mammalia, Tethytheria)
-
Located in
Library
/
RBINS Staff Publications
-
Early Eocene artiodactyls (Mammalia) from western India
-
Located in
Library
/
RBINS Staff Publications
-
Early Eocene cambaytheres from Indo-Pakistan are the sister group of Perissodactyls
-
Cambaytherium, Nakusia, and Kalitherium are closely related early Eocene mammals from the Indo-Pakistan region that have been assigned to Perissodactyla (Laurasiatheria)or Anthracobunidae. The latter have been variously considered artiodactyls or perissodactyls, but more recently are usually placed at the base of the order Proboscidea or of the more inclusive Tethytheria (Afrotheria). We present new evidence from the dentition, skull, and postcranial skeleton of Cambaytherium, from Gujarat, India (ca. 54.5 Ma), that cambaytheres occupy a pivotal position as the sister taxon of Perissodactyla. Cambaytherium was more robust than basal perissodactyls such as ″Hyracotherium″ and Homogalax, and had a body mass of ~25-27 kg based on humeral, radial, and dental regressions. Perissodactyl synapomorphies include a transverse nasal-frontal suture, twinned molar metaconids, and an astragalus with deeply grooved trochlea and a saddleshaped navicular facet. Like perissodactyls, cambaytheres are mesaxonic and have hooflike unguals and a cursorially-adapted skeleton. Plesiomorphic traits compared to basal perissodactyls include bunodont molars with large conules and almost no hint of bilophodonty, unmolarized premolars, sacrum with four vertebrae, humerus with distally extensive pectoral crest and distal articulation lacking a capitular tail, distal radius without discrete scaphoid and lunate fossae, femur with low greater trochanter, calcaneus robust and wide with rounded ectal facet, astragalus wide with moderately long neck and vestigial astragalar foramen, navicular and cuboid short and wide, metapodials short and robust, and Mc I and Mt V present. In most or all of these traits cambaytheres are intermediate between phenacodontid condylarths and perissodactyls but closer to the latter. Our phylogenetic analyses place cambaytheres just outside perissodactyls, and place anthracobunids among primitive perissodactyls. However, similarities between cambaytheres and anthracobunids suggest that they are closely related, and future discovery of skeletal material of anthracobunids will provide a test of this hypothesis. Our results indicate that Anthracobunidae are not Proboscidea or tethytheres, and suggest that the origin of Perissodactyla may have taken place on the drifting Indian plate. How the progenitors of perissodactyls reached India is more problematic but might have involved land connections with Afro-Arabia during the Paleocene. Field work and research supported by the National Geographic Society.
Located in
Library
/
RBINS Staff Publications
-
Early Eocene environmental development in the northern Peri-Tethys (Aktulagay, Kazakhstan) based on benthic foraminiferal assemblages and stable isotopes (O, C).
-
The Aktulagay section in Kazakhstan provides an expanded northern Tethyan record of the middle Ypresian (calcareous nannoplankton zones NP11-13, ~ 54-50 Ma), including the Early Eocene Climatic Optimum (EECO). The marl sequence features a series of sapropel beds, observed throughout the Peri-Tethys, indicative of the basin-wide occurrence of episodic hypoxic events. In order to unravel the paleoenvironmental evolution at Aktulagay during this period of global warming, we investigated the benthic foraminiferal record by means of a detailed multivariate analysis of the > 63 μm fraction, as well as through stable isotopic (C, O) investigations on excellently preserved benthic foraminiferal specimens. The Alashen Formation (NP11 to lower NP12; ~ 54 to 52.5 Ma), in the lower part of the sequence, contains a diverse assemblage of deep outer neritic (~ 200-250 m) benthic foraminifera, with common Pulsiphonina prima and Paralabamina lunata. The sea-floor conditions are interpreted as initially (54 Ma) well-ventilated and oligo- to mesotrophic, gradually changing to more eutrophic and oxygen-limited, culminating in more permanent low-oxygen conditions and eutrophy in the sapropel-bearing Aktulagay B1 unit (middle NP12; ~ 52.5-52 Ma). The latter conclusion is corroborated by the dominance of Anomalinoides acutus and Bulimina aksuatica and the lower diversity. Also the upward migration of endobenthic species to the sediment-water interface, as suggested by rising δ13Cendobenthic values, supports this interpretation. A transgression, which flooded lowlands, might have caused this development. In the Aktulagay B2 unit (top NP12-NP13; ~ 52-50 Ma), benthic foraminiferal assemblages dominated by Epistominella minuta suggest an oligotrophic environment, with transient pulses of phytodetritus and moderate ventilation. The Aktulagay B2 unit coincides with the peak temperature interval of the EECO, as indicated by its position close to the base of NP13 and rising δ13Cepibenthic values. Large river plumes, episodically reaching the area, in a monsoonal climatic context, might explain this basin development. Although it is not unlikely that some of the observed patterns are related to long-term climate change, it can currently not be excluded that changing paleogeography and variable connections to the Tethys, Atlantic and the Arctic Ocean were responsible for the long-term period with dysoxia and anoxia during deposition of the sapropel beds at the Peri-Tethyan seafloor. The evolution of the basin as observed in Aktulagay shows similarities to the evolution of the North Sea Basin as observed in Denmark, suggesting that these basins were connected during the Early Eocene.
Located in
Library
/
RBINS Staff Publications