Skip to content. | Skip to navigation

Personal tools

You are here: Home
3193 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Evolution of the hypercarnivorous dentition in mammals (Metatheria, Eutheria) and its bearing on the development of tribosphenic molars
One major innovation of mammals is the tribosphenic molar, characterized by the evolution of a neomorphic upper cusp (¼protocone) and a lower basin (talonid) that occlude and provide shearing and crushing functions. This type of molar is an evolutionarily flexible structure that enabled mammals to achieve complex dental adaptations. Among carnivorous mammals, hypercarnivory is a common trend that evolved several times among therians (marsupials, placentals, and stem relatives). Hypercarnivory involves an important simplification of the carnassial molar pattern from the ancestral tribosphenic molar pattern, with the modification of the triangular tooth crown, and the loss of several cusps and cuspids typical of the tribosphenic molar. These losses confer to the molars of the hypercarnivorous mammals a plesiomorphic /paedomorphic morphology that resembles more the earliest mammaliaforms than the earliest therians. Here, we demonstrate that the modification of the molar morphology is fully explained by a patterning cascade mode of cusp development. Contrary to what was previously proposed, our study concludes that the metaconid (mesiolingual cusp of lower molars, associated with a puncturing function) does not influence cusp development of the talonid (distal crushing heel of lower molars). Moreover, it provides a new example of how heterochronic changes were crucial to the evolution of mammal dentition. To overcome the difficulty of applying behavioral or ecological definitions of diets to fossil animals, we characterize hypercarnivorous dentitions on the basis of the molar morphology and more particularly on the loss or retention of crushing structures, each dentition resulting from adaptations to a distinct ecomorphotype. Despite repeated and convergent evolution of hypercarnivorous forms, hypercarnivory appears as a highly constrained specialization (i.e., “dead end”) that is unlikely to evolve back to omnivorous dentition, especially when the crushing structures are lost.
Located in Library / RBINS Staff Publications 2017
Article Reference New fossils of Hyaenodonta (Mammalia) from the Eocene localities of Chambi (Tunisia) and Bir el Ater (Algeria), and the evolution of the earliest African hyaenodonts
We present and describe new fossils from the Eocene North African localities of Chambi (Tunisia; late Ypresian or early Lutetian) and Bir el Ater (Algeria; latest Bartonian or earliest Priabonian). The specimens from Chambi allow recognizing two recently described hyainailourines: Furodon crocheti and Parvavorodon gheerbranti; these taxa were previously known from the Gour Lazib area (Algeria; late Ypresian or early Lutetian). The new material from Tunisia includes a fragmentary dentary of Parvavorodon that substantially supports the hyainailourine status of this genus and represents the oldest dentary fragment presently known for a juvenile of Hyaenodonta in Africa. The presence of Furodon and Parvavorodon in Chambi strengthens support for the hypothesis of contemporaneity of the Eocene Gour Lazib and Chambi mammalbearing localities. In addition, the find of a typical teratodontine fourth premolar in Chambi testifies to the presence of a small representative of this group. The fossil record in Bir el Ater is scarcer than in Chambi. However, we recognize specimens attributable to a hyainailourine and a teratodontine. The latter is referred as Masrasector cf. ligabuei, and is the oldest record for this genus. We tentatively identify a modification of the hyaenodont fauna in the Maghreb after the “Early Eocene Climatic Optimum” (EECO). This faunal change might be related to the decrease of the global temperature after the EECO event. It appears contemporaneous of a drastic replacement in the composition of the mammal faunas in Africa. Finally, the end of the Eocene (Priabonian) shows an increase in the subfamilial richness amongst hyaenodonts.
Located in Library / RBINS Staff Publications 2016
Article Reference A new genus of Pseudospirobolellidae (Diplopoda, Spirobolida) from limestone karst areas in Thailand, with descriptions of three new species
Located in Library / RBINS Staff Publications 2022
Article Reference Morphological and Genetic Divergence in a Gill Monogenean Parasitizing Distant Cichlid Lineages of Lake Tanganyika: Cichlidogyrus nshomboi (Monogenea: Dactylogyridae) from Representatives of Boulengerochromini and Perissodini
Located in Library / RBINS Staff Publications 2022
Article Reference Rissoina ponderi n. sp. (Caenogastropoda: Rissoinidae) a new endemic species from New South Wales and a comparison with the related species Rissoina elegantula Angas, 1880
Located in Library / RBINS Staff Publications 2022
Article Reference Solving a taxonomic puzzle: integrative taxonomy reveals new cryptic and polymorphic species of Oscarella in south-eastern Brazil (Homoscleromorpha : Oscarellidae)
Located in Library / RBINS Staff Publications 2022
Article Reference DNA Identification and Diversity of the Vector Mosquitoes Culex pipiens s.s. and Culex torrentium in Belgium (Diptera: Culicidae)
Located in Library / RBINS Staff Publications 2022
Article Reference A new Atocrates J. Thomson, 1860 (Coleoptera: Trictenotomidae) from Dayaoshan, S China: The importance of biodiversity refugia
Located in Library / RBINS Staff Publications 2022
Article Reference Control of simulated ocean ecosystem indicators by biogeochemical observations
To protect marine ecosystems threatened by climate change and anthropic stressors, it is essential to operationally monitor ocean health indicators. These are metrics synthetizing multiple marine processes relevant to the users of operational services. Here we assess if selected ocean indicators simulated by operational models can be controlled (here meaning constrained effectively) by biogeochemical observations, by using a newly proposed methodological framework. The method consists in firstly screening the sensitivities of the indicators with respect to the initial conditions of the observable variables. These initial conditions are perturbed stochastically in Monte Carlo simulations of one-dimensional configurations of a multi-model ensemble. Then, the models are applied in three-dimensional ensemble assimilation experiments, where the reduction of the ensemble variance corroborates the controllability of the indicators by the observations. The method is applied for ten relevant ecosystem indicators (ranging from inorganic chemicals to plankton production), seven observation types (representing data from satellite and underwater platforms), and an ensemble of five biogeochemical models of different complexity, employed operationally by the European Copernicus Marine Service. We demonstrate that all the indicators are controlled by one or more types of observations. In particular, the indicators of phytoplankton phenology are controlled and improved by the merged observations from the surface ocean colour and chlorophyll profiles. Similar observations also control and reduce the uncertainty of the plankton community structure and production. However, the uncertainty of the trophic efficiency and POC increases when assimilating chlorophyll-a data, though observations were not available to assess whether that was due to a worsen model skill. We recommend that the assessment of controllability proposed here becomes a standard practice in designing operational monitoring, reanalysis and forecast systems, to ultimately provide the users of operational services with more precise estimates of ocean ecosystem indicators.
Located in Library / RBINS Staff Publications 2023
Article Reference High-Latitude Dinosaur Nesting Strategies during the Latest Cretaceous in North-Eastern Russia
Located in Library / RBINS Staff Publications 2023