Adapisoriculidae are an enigmatic group of small mammals known from the late Cretaceous of India, and from the early Palaeocene to early Eocene of Europe and Africa. Based on their primitive dental morphology, they have been classified as didelphids, nyctitheriids, leptictids, mixodectids, tupaiids, and palaeoryctids. While the latest hypothesis based on dental morphology suggests an affinity with Lipotyphla, postcranial remains indicate a close relationship with Euarchonta. Here, we present new adapisoriculid dental remains from the early Palaeocene locality of Hainin (Belgium). Adapisoriculidae are particularly abundant in Hainin, where they represent about one third of the mammalian fauna, offering new insights into both their specific and generic phylogenetic interrelationships. We describe three new species (Afrodon gheerbranti sp. nov., Bustylus folieae sp. nov. and Proremiculus lagnauxi gen. et sp. nov.) and document the previously unknown lower dentition of Bustylus marandati. The diversity of dental morphologies observed in the Hainin fauna suggests different interrelationships than previously suggested. In particular, the genus Proremiculus is considered morphologically intermediate between Afrodon and Remiculus, and the latter is no longer recognised as the sister group of Adapisoriculus. Although the highest diversity of adapisoriculids occurs in Europe, the oldest and most primitive members of the family were found in India and Africa, respectively. The geographic origin of the family could thus be located in any of these three continents, depending on the importance attributed to each of these factors. The coexistence of primitive and derived adapisoriculids at Hainin might indicate a very quick diversification in Europe, probably starting around the K−T boundary.
Located in
Library
/
RBINS Staff Publications
Only a few major research programs are currently targeting COI barcoding of amphibians and reptiles (including chelonians and crocodiles), two major groups of tetrapods. Amphibian and reptile species are typically old, strongly divergent, and contain deep conspecifi c lineages which might lead to problems in species assignment with incomplete reference databases. As far as known, there is no single pair of COI primers that will guarantee a suffi cient rate of success across all amphibian and reptile taxa, or within major subclades of amphibians and reptiles, which means that the PCR amplifi cation strategy needs to be adjusted depending on the specifi c research question. In general, many more amphibian and reptile taxa have been sequenced for 16S rDNA, which for some purposes may be a suitable complementary marker, at least until a more comprehensive COI reference database becomes available. DNA barcoding has successfully been used to identify amphibian larval stages (tadpoles) in species-rich tropical assemblages. Tissue sampling, DNA extraction, and amplifi cation of COI is straightforward in amphibians and reptiles. Single primer pairs are likely to have a failure rate between 5 and 50\% if taxa of a wide taxonomic range are targeted; in such cases the use of primer cocktails or subsequent hierarchical usage of different primer pairs is necessary. If the target group is taxonomically limited, many studies have followed a strategy of designing specifi c primers which then allow an easy and reliable amplifi cation of all samples.
Located in
Library
/
RBINS Staff Publications