-
Aramazdospirifer orbelianus (Abich, 1858) n. comb., a new cyrtospiriferid brachiopod genus and a biostratigraphically important species from the lower Famennian (Upper Devonian) of Armenia.
-
Located in
Library
/
RBINS Staff Publications 2022
-
Homenaje a Claude Massin (1948‒2021), especialista en pepinos de mar (Tribute to Claude Massin (1948‒2021), specialist in sea cucumbers)
-
Located in
Library
/
RBINS Staff Publications 2021
-
A classic Late Frasnian chondrichthyan assemblage from southern Belgium
-
Samples from the Upper Frasnian (Devonian) of Lompret Quarry and Nismes railway section in Dinant Synclinorium, southern Belgium, yielded several chondrichthyan teeth and scales. The teeth belong to three genera: Phoebodus, Cladodoides and Protacrodus. The comparison with selected Late Frasnian chondrichthyan assemblages from the seas between Laurussia and Gondwana revealed substantial local differences of taxonomic composition due to palaeoenvironmental conditions, such as depth, distance to submarine platforms, oxygenation of water, and possibly also temperature. The assemblage from Belgium, with its high frequency of phoebodonts, is the most similar to that from the Ryauzyak section, South Urals, Russia, and the Horse Spring section, Canning Basin, Australia.
Located in
Library
/
RBINS Staff Publications 2017
-
Fungi in raw insect and arachnid taxa containing species used in human entomophagy: a review
-
Located in
Library
/
RBINS Staff Publications 2017
-
New fossils from Tadkeshwar Mine (Gujarat, India) increase primate diversity from the early Eocene Cambay Shale
-
Several new fossil specimens from the Cambay Shale Formation at Tadkeshwar Lignite Mine in Gujarat document the presence of two previously unknown early Eocene primate species from India. A new species of Asiadapis is named based on a jaw fragment preserving premolars similar in morphology to those of A. cambayensis but substantially larger. Also described is an exceptionally preserved edentulous dentary (designated cf. Asiadapis, unnamed sp. nov.) that is slightly larger and much more robust than previously known Cambay Shale primates. Its anatomy most closely resembles that of Eocene adapoids, and the dental formula is the same as in A. cambayensis. A femur and calcaneus are tentatively allocated to the same taxon. Although the dentition is unknown, exquisite preservation of the dentary of cf. Asiadapis sp. nov. enables an assessment of masticatory musculature, function, and gape adaptations, as well as comparison with an equally well-preserved dentary of the asiadapid Marcgodinotius indicus, also from Tadkeshwar. The new M. indicus specimen shows significant gape adaptations but was probably capable of only weak bite force, whereas cf. Asiadapis sp. nov. probably used relatively smaller gapes but could generate relatively greater bite forces.
Located in
Library
/
RBINS Staff Publications 2018
-
Mastication and enamel microstructure in Cambaytherium, a perissodactyl‑like ungulate from the early Eocene of India
-
The dentition of Cambaytherium was investigated in terms of dental wear, tooth replacement and enamel microstructure. The postcanine tooth row shows a significant wear gradient, with flattened premolars and anterior molars at a time when the last molars are only little worn. This wear gradient, which is more intensive in Cambaytherium thewissi than in Cambaytherium gracilis, and the resulting flattened occlusal surfaces, may indicate a preference for a durophagous diet. The tooth replacement (known only in C. thewissi) shows an early eruption of the permanent premolars. They are in function before the third molars are fully erupted. During the dominant phase I of the chewing cycle the jaw movement is very steep, almost orthal, with a slight mesiolingual direction and changes into a horizontal movement during phase II. The enamel microstructure shows Hunter-Schreger-bands (HSB) in the inner zone of the enamel. In some teeth the transverse orientation of the HSB is modified into a zig-zag pattern, possibly an additional indicator of a durophagous diet.
Located in
Library
/
RBINS Staff Publications 2018
-
Plesiadapid mammals from the latest Paleocene of France offer new insights on the evolution of Plesiadapis during the Paleocene-Eocene transition
-
Plesiadapidae are among the most successful mammal families of the Paleocene, but in North America they disappear abruptly around the Paleocene-Eocene boundary. In contrast, in Europe, they survive a few million years into the Eocene, although only as the genus Platychoerops. The latest Paleocene deposits of Petit-P^atis (Paris Basin, France) have produced three new plesiadapid species, one of each genus known in Europe: Plesiadapis ploegi, sp. nov., Platychoerops boyeri, sp. nov., and Chiromyoides mauberti, sp. nov. Each of these new species is represented by the very characteristic upper incisor, thus ascertaining their concomitant presence and in particular the spatial and temporal coexistence of Plesiadapis and Platychoerops. Plesiadapis ploegi, sp. nov., is morphologically intermediate between Plesiadapis tricuspidens and Platychoerops russelli, with a tricuspid I1 typical of Plesiadapis and a semimolariform p4 closer to Platychoerops. Its relatively high morphological variability is illustrated. Platychoerops boyeri, sp. nov., has the simple derived I1 of all Platychoerops and a p4 slightly more molariform than that of Ples. ploegi. Chiromyoides mauberti, sp. nov., is closest to Chiromyoides campanicus, but it is smaller and has a particular I1 with multiple posterocones. The systematic position of ‘Platychoerops’ georgei is discussed; this taxon is considered a chimera, and its type I1 belongs to either Chiromyoides or Plesiadapis. Cladistic analysis highlights the paraphyly or polyphyly of all genera of Plesiadapidae. Finally, there is some indication of morphological convergences between European and North American plesiadapids, which may be the result of similar environmental changes on both continents just before the Paleocene-Eocene boundary.
Located in
Library
/
RBINS Staff Publications 2018
-
First eurhinodelphinid dolphin from the Paratethys reveals a new family of specialised echolocators
-
Located in
Library
/
RBINS Staff Publications 2022
-
Is ‘everything everywhere’? Unprecedented cryptic diversity in the cosmopolitan flatworm Gyratrix hermaphroditus
-
Located in
Library
/
RBINS Staff Publications 2021
-
In situ incubations with the Gothenburg benthic chamber landers: Applications and quality control
-
In situ incubations of sediment with overlying water provide valuable and consistent information about benthic fluxes and processes at the sediment-water interface. In this paper, we describe our experiences and a variety of applications from the last 14 years and 308 deployments with the Gothenburg benthic chamber lander systems. We give examples of how we use sensor measurements for chamber leakage control, in situ chamber volume determination, control of syringe sampling times, sediment resuspension and stirring quality. We present examples of incubation data for in situ measurements of benthic fluxes of oxygen, dissolved inorganic carbon, nutrients, metals and gases made with our chamber landers, as well as manipulative injection experiments to study nitrogen cycling (injections of 15N nitrate), phosphate retention (injections of marl suspension) and targeted sediment resuspension. Our main goal is to demonstrate the possibilities that benthic chamber lander systems offer to measure solute fluxes and study processes at the sediment-water interface. Based on our experience, we recommend procedures to be used in order to obtain high quality data with benthic chamber landers.
Located in
Library
/
RBINS Staff Publications 2021