-
Spatial variation of ostracod (Ostracoda, Crustacea) egg banks in temporary lakes of a tropical floodplain
-
Located in
Library
/
RBINS Staff Publications 2020
-
Spatio-temporal feedstock availability and techno-economic constraints in the design and optimization of supply chains: The case of domestic woody biomass for biorefining
-
A future bio-based economy envisions the transformation of the petrochemical industry into using biomass such as wood (waste) as a major resource. The early-stage evaluation of a biorefinery project requires the optimization of the lay-out of the supply chain considering the spatio-temporal variability of the availability of feedstock and the techno-economical characteristics of the biorefinery process. Therefore, the presented methodology was developed combining three models: (1) a forest management and planning tool providing a detailed prediction on the wood resource availability as well as the harvested feedstock quantity and cost with respect to location and time, (2) a techno-economic assessment model of the biorefinery process (e.g., species-specific conditions, capacity, CAPEX, OPEX), and (3) a strategic supply chain optimization model combining the insights of (1) and (2) into a spatio-temporal explicit supply chain analysis. The developed methodology has been evaluated through a case-study on the emerging reductive catalytic fractionation (RCF) biorefining in the Flanders region (EU) and shows that the most economically interesting configuration is one large biorefinery with a yearly wood chip intake of 150 kton. The biorefinery location reflects the available feedstock distribution in Flanders and is suggested to be situated best in the most forested region. The proposed methodology proved to be dynamic and robust: (1) input data and technical calculations can easily be adapted or updated; (2) the methodology can be applied to a broad range of applications beyond the scope of the biorefinery, to different feedstock choices; (3) the impact of the biorefinery location on e.g. energy balance, CO2 emissions, and financial balance can be assessed.
Located in
Library
/
RBINS Staff Publications 2024
-
Spatio-temporal variation in ant (Hymenoptera: Formicidae) communities in leaf-litter and soil layers in a premontane tropical forest
-
Located in
Library
/
RBINS Staff Publications 2016
-
Spatiotemporal changes in riverine input into the Eocene North Sea revealed by strontium isotope and barium analysis of bivalve shells
-
Located in
Library
/
RBINS Staff Publications 2024
-
Spatiotemporal Dynamics of Suspended Particulate Matter in Water Environments: A Review
-
Located in
Library
/
RBINS Staff Publications 2024
-
Spatiotemporal Variability in Phytoplankton Size Class Modulated by Summer Monsoon Wind Forcing in the Central Arabian Sea
-
Located in
Library
/
RBINS Staff Publications 2024
-
Spatiotemporal variation and sediment retention effects on nematode communities associated with Halimeda opuntia (Linnaeus) Lamouroux (1816) and Sargassum polyceratium Montagne (1837) seaweeds in a tropical phytal ecosystem
-
Nematodes play an important role in ecological processes and are one of the most abundant meiofaunal organisms associated with seaweeds. Yet, knowledge on seaweed bed ecosystems is limited. Nematodes associated with Sargassum polyceratium and Halimeda opuntia were compared in two transects, 80 m apart and parallel to the beach line in Cupe Beach, Brazil. The temporal variation during the dry and rainy seasons and the effect of sediment retention by the seaweed on nematode density and composition were investigated. The differences in nematode communities between the two seasons were mainly caused by the increase in density of the most abundant genera in the rainy season. A significant difference was observed between the nematode communities of the two transects for H. opuntia. The nematode communities of both seaweed species did not differ significantly in the same transect. The genus Euchromadora was dominant in both seaweed species. The amount of sediment retained by the seaweeds did not affect the overall nematode density. However, it was positively correlated with the density of Draconema and Euchromadora in both seaweeds, and both genera were exclusively found associated with seaweeds. This result opposes the idea that the more sediment retained by the seaweed, the higher the nematode overall density and the higher the number of nematodes originally coming from the sediment.
Located in
Library
/
RBINS Staff Publications 2016
-
Species depauperate communities and low abundances of monogenean gill parasites at the edge of the natural distribution range of their cichlid hosts in northern Africa
-
Located in
Library
/
RBINS Staff Publications 2022
-
Species depauperate communities and low abundances of monogenean gill parasites at the edge of the natural distribution range of their cichlid hosts in northern Africa
-
Located in
Library
/
RBINS Staff Publications 2023 OA
-
Species distribution, hybridization and connectivity in the genus Chionodraco: Unveiling unknown icefish diversity in antarctica
-
Aim: The species of the genus Chionodraco (Notothenioidei) are the most abundant icefish on the continental shelf of the Weddell Sea. While previous studies indicated that only Chionodraco hamatus and Chionodraco myersi inhabit the Weddell Sea, the third Chionodraco species, Chionodraco rastrospinosus, was recently sampled in the area. As C. rastrospinosus is supposed to be found only at the Antarctic Peninsula and Scotia Arc, this study aimed at confirming the species classification of C. rastrospinosus by molecular methods and identifying its putative source population. Given the documented evidence of introgression among the three species, we tested whether the newly found C. rastrospinosus shared any genetic variability with the other Chionodraco species. To explain the pattern of distribution of the Chionodraco species, we aimed at estimating the hydrodynamic connectivity between the Antarctic Peninsula and the Weddell Sea. Location: Antarctic Peninsula, southern Scotia Arc and the south-eastern Weddell Sea. Methods: We genotyped 19 microsatellites and sequenced the mitochondrial D-loop for 560 Chionodraco individuals. We simulated the dispersal of more than 3 million drifters (Lagrangian model). Results: The molecular analyses support the presence of C. rastrospinosus in the Weddell Sea and its homogeneity with C. rastrospinosus from the Antarctic Peninsula. Bayesian clustering identifies three putative hybrids among C. rastrospinosus and the other congenerics. Lagrangian simulations do not support connectivity driven by the oceanographic features of the Antarctic Peninsula and Weddell Sea via passive larval dispersal only. Main conclusions: This study documents, for the first time, the presence of C. rastrospinosus in the Weddell Sea unveiling more biodiversity than previously known in this region. The sympatry of the three Chionodraco species explains the occurrence of occasional, ongoing events of hybridization in the genus. Alternative possible
Located in
Library
/
RBINS Staff Publications 2021