Close examination of the geographic position of Early Neolithic settlements in SE-Europe shows that the oldest sites are almost exclusively situated in some very specific biogeographic areas. These earliest Neolithic settlements are all concentrated in a region that Pavle Cikovac calls the Sub-Mediterranean-Aegean biogeographic region. It covers the northern and north-western edge of the Aegean, including Thessaly, Greek Macedonia and Greek Thrace, and extends further into the Balkans, but only along the valleys rivers of the Vardar (Axios), Struma (Strymon) and Mesta (Nestos) rivers. Surprisingly, although Thrace is the closest landscape to Anatolia, it does not contain any sites of the earliest phase of the Neolithic at all beyond the narrow zone of the northern Marmara. In the present paper we explain this remarkable situation in terms of the natural environment in this particular region of the southern Balkans. To begin, we propose that the lack of oldest Early Neolithic settlements in Thrace is related to the extreme microclimate of this region. As shown by modern vegetation analogues, Thracian oriental hornbeam-downy oak forests are exposed to stronger continental influence with frosts in the winter and average temperatures during the coldest months that are ca. 2-3 °C lower than those in the Central Balkans that have Sub-Mediterranean vegetation. In general terms, what we may expect is that the earliest Neolithic groups would first appear in regions with similarly mild conditions, on a yearly average, to those in the Mediterranean. Such mild conditions are indeed present in the Sub-Mediterranean biogeographic region. On the other hand, before moving further to the north along the north-south oriented river systems of the Central Balkans, the Neolithic economy based on agriculture and stockbreeding would first have to be adapted to the relatively harsh winters in the Balkans. In consequence, it would have been possible to apply the new Neolithic lifestyle in the neighbouring areas of Thrace, Walachia, Dobrudža and the Carpathian Basin only after a certain period of adaptation. Available 14C-data show that the adaptation period is identical to the time-span of Rapid Climate Change (RCC: 6550-6050 calBC) as defined in previous studies.
Located in
Library
/
RBINS Staff Publications 2017
Abstract Estimating wood extraction rates from forests based on archaeological and historical evidence is an important step in evaluating the sustainability of past social-ecological systems. In this paper, we present a calculation tool to estimate human wood resource use for a selected location during a defined period in the past. We illustrate the method by its application to the ancient town of Sagalassos (South-west Anatolia, Turkey) during the Roman Imperial period, with a focus on pottery production and the Roman Baths. Based on archaeological data, thermodynamic formulas and calorific values, an estimation is provided of the amount of wood used within a time step of one year. Because quantitative information on ancient technology and lifestyle is rather scarce and uncertain, input values consist of ranges. In order to take this uncertainty into account, a Monte Carlo procedure is included, offering a probability distribution of possible outcomes. Our results indicate that wood consumption in 2nd century Sagalassos was quite high, with a lifestyle including frequent hot bathing, export driven pottery production and a climate that required heating during winter months. Based on the available woodland area, we conclude that the community of Sagalassos was intensively using the surrounding forests.
Located in
Library
/
RBINS Staff Publications 2017