Abstract Sex estimation is a paramount step of bioprofiling in both forensic anthropology and osteoarchaeology. When the pelvis is not optimally preserved, anthropologists commonly rely on the cranium to accurately estimate sex. Over the last decades, the geometric morphometric (GM) approach has been used to determine sexual dimorphism of the crania, in size and shape, overcoming some difficulties of traditional visual and metric methods. This article aims to investigate sexual dimorphism of the occipital and temporal region through GM analysis in a metapopulation of 50 Western-European identified individuals. Statistical analyses were performed to compare centroid size and shape data between sexes through the examination of distinct functional modules. Regression and Procrustes ANOVA were used to examine allometric and asymmetrical implications. Discriminant functions, combining size and shape data, were established. Significant dimorphism in size was found, with males having larger crania, confirming the major influence size has on cranial morphology. Allometric relationships were found to be statistically significant in both right and left temporal bones while shape differences between sexes were only significant on the right temporal bone. The visualization of the mean consensus demonstrated that males displayed a larger mastoid process associated with a reduced mastoid triangle and less projected occipital condyles. This exploratory study confirms that GM analysis represents an effective way to quantitatively capture shape of dimorphic structures, even on complex rounded ones such as the mastoid region. Further examination in a larger sample would be valuable to design objective visualization tools that can improve morphoscopic sex estimation methods.
Located in
Library
/
RBINS Staff Publications 2022
Background: The identification of free-living marine nematodes is difficult because of the paucity of easily scorable diagnostic morphological characters. Consequently, molecular identification tools could solve this problem. Unfortunately, hitherto most of these tools relied on 18S rDNA and 28S rDNA sequences, which often lack sufficient resolution at the species level. In contrast, only a few mitochondrial COI data are available for free-living marine nematodes. Therefore, we investigate the amplification and sequencing success of two partitions of the COI gene, the M1-M6 barcoding region and the I3-M11 partition. Methodology: Both partitions were analysed in 41 nematode species from a wide phylogenetic range. The taxon specific primers for the I3-M11 partition outperformed the universal M1-M6 primers in terms of amplification success (87.8\% vs. 65.8\%, respectively) and produced a higher number of bidirectional COI sequences (65.8\% vs 39.0\%, respectively). A threshold value of 5\% K2P genetic divergence marked a clear DNA barcoding gap separating intra-and interspecific distances: 99.3\% of all interspecific comparisons were 〉0.05, while 99.5\% of all intraspecific comparisons were 〈0.05 K2P distance. Conclusion: The I3-M11 partition reliably identifies a wide range of marine nematodes, and our data show the need for a strict scrutiny of the obtained sequences, since contamination, nuclear pseudogenes and endosymbionts may confuse nematode species identification by COI sequences.
Located in
Library
/
No RBINS Staff publications