As disease regulation is a key ecosystem service, it is crucial that we better understand the role that restoring landscapes can play in reducing disease risks. Ongoing One Health studies suggest that declining biodiversity and increasing zoonotic pathogen spill-over risk are linked. Restoration processes normally aim at increasing species diversity, wherefore it is assumed that pathogens will be diluted in restored ecosystems, hence reducing the risk of zoonotic spillover. Nonetheless, the developing species composition during restorative processes will impact dilution-amplification effects. To estimate the threshold beyond which a restored ecosystem can be considered to have reached the pathogen dilution phase, it is crucial to characterise the communities of hosts, and the prevalence of pathogens, at the different stages of recovery of an ecosystem. Using interdisciplinary methods, this project has the dual aim of examining the amplification-dilution of zoonotic pathogens in a mangrove forest of the western Peninsular Malaysia, and to estimate the frequency and duration of exposure of local communities to this hazard, so as to best mitigate the risk of zoonotic pathogen spillover.
Located in
Library
/
RBINS Staff Publications 2025
Summary Domestic cats were derived from the Near Eastern wildcat (Felis lybica), after which they dispersed with people into Europe. As they did so, it is possible that they interbred with the indigenous population of European wildcats (Felis silvestris). Gene flow between incoming domestic animals and closely related indigenous wild species has been previously demonstrated in other taxa, including pigs, sheep, goats, bees, chickens, and cattle. In the case of cats, a lack of nuclear, genome-wide data, particularly from Near Eastern wildcats, has made it difficult to either detect or quantify this possibility. To address these issues, we generated 75 ancient mitochondrial genomes, 14 ancient nuclear genomes, and 31 modern nuclear genomes from European and Near Eastern wildcats. Our results demonstrate that despite cohabitating for at least 2,000 years on the European mainland and in Britain, most modern domestic cats possessed less than 10% of their ancestry from European wildcats, and ancient European wildcats possessed little to no ancestry from domestic cats. The antiquity and strength of this reproductive isolation between introduced domestic cats and local wildcats was likely the result of behavioral and ecological differences. Intriguingly, this long-lasting reproductive isolation is currently being eroded in parts of the species’ distribution as a result of anthropogenic activities.
Located in
Library
/
RBINS Staff Publications 2023