Skip to content. | Skip to navigation

Personal tools

You are here: Home / RBINS Staff Publications / Search publications of the members of the Royal Belgian institute of natural Sciences

Search publications of the members of the Royal Belgian institute of natural Sciences

Article Reference Octet Stream Automated water surface temperature retrieval from Landsat 8/TIRS
Satellite remote sensing of Land and Water Surface Temperature (L/WST) has many applications in studies of terrestrial and aquatic ecology. Retrieval of L/WST requires a well calibrated radiometer and an accurate atmospheric correction. In the present study, the performance of the Thermal InfraRed Sensor (TIRS) on board Landsat 8 is evaluated for the retrieval of L/WST. libRadtran is used to retrieve atmospheric correction parameters based on atmospheric profiles of relative humidity and temperature from three global atmospheric models. Performance of single band retrievals is compared to typical MODTRAN results from the Atmospheric Correction Parameter Calculator (ACPC) and a split-window approach. A multi-temporal land masking method using imagery from the Operational Land Imager (OLI) on board Landsat 8 is demonstrated, and is used to automatically classify imagery in the matchup dataset in three classes of cloud cover. Two sources of in situ data covering the Belgian Coastal Zone (BCZ) are used for validation of the L/WST product: (1) fixed locations in the Flemish Banks measurement network and (2) underway data from regular RV Belgica campaigns. In the present study the single band methods outperformed the split-window approach, and consistent retrievals are found for the MODTRAN and libRadtran simulations. Typical single band surface temperature retrievals in quasi cloud-free conditions have Root Mean Squared Differences (RMSD) of 0.7 K and 1 K for Bands 10 and 11 with low bias, depending on the method and atmospheric profile source. For imagery with scattered clouds, RMSD values increase to 1 K and 2 K respectively with an approximately 0.5 K cold bias, likely caused by cloud proximity. The calibration efforts combined into Collection 1 allows for accurate absolute surface temperature retrievals from B10 on Landsat 8/TIRS for homogeneous targets with known emissivity, such as liquid water. The method is adapted to global processing and can be used for Land Surface Temperature retrieval with a suitable source of emissivity data.
Article Reference ACIX-Aqua: A global assessment of atmospheric correction methods for Landsat-8 and Sentinel-2 over lakes, rivers, and coastal waters
Article Reference Octet Stream The QAA-RGB: A universal three-band absorption and backscattering retrieval algorithm for high resolution satellite sensors. Development and implementation in ACOLITE
Article Reference Towards physical habitat characterisation in the Antarctic Sør Rondane Mountains using satellite remote sensing
Article Reference Sechelleptus arborivagus sp. nov., a new arboreal spirostreptid millipede (Diplopoda, Spirostreptidae) endemic to Mayotte Island (Comoros Archipelago), Indian Ocean
A new millipede species of the genus Sechelleptus Mauriès, 1980 is described and illustrated from Mayotte Island, Indian Ocean. This new species, S. arborivagus sp. nov., found on trees, looks particularly similar to the sympatric S. variabilis VandenSpiegel & Golovatch, 2007, but is much larger and has a very different ecological behavior. Phylogenetic analyses based on a concatenated dataset of the COI and 16S rRNA genes and including nine species of Spirostreptidae (including Sechelleptus, Doratogonus Attems, 1914, Bicoxidens Attems, 1928 and Spirostreptus Brandt, 1833), strongly support the monophyly of Sechelleptus. Despite the similarity of their genitalia, the molecular analyses also reveal a clear-cut genetic divergence between S. arborivagus sp. nov. and S. variabilis (22.55% for COI and 6.63% for 16SrRNA) and further suggest the presence of a higher diversity within the genus Sechelleptus on Mayotte.
Book Reference Diplopodes et autres myriapodes de Mayotte
Cet ouvrage, richement illustré, est le résultat d’un inventaire des myriapodes dressé à l’issue d’une campagne de terrain en novembre 2019 et du contenu des collections de myriapodes de Mayotte du Musée royal de l’Afrique centrale et du Muséum national d’Histoire naturelle de Paris. Les myriapodes, souvent appelés mille-pattes et scolopendres, restent très méconnus. Ils sont pourtant d’excellents bio-indicateurs de l’état écologique des écosystèmes terrestres. Ce guide a pour but de présenter un aperçu des espèces de diplopodes et autres myriapodes présents à Mayotte, mais aussi des techniques de récolte, d’inventaire et d’identification de ceux-ci.De façon surprenante et contrairement à ce que le lecteur pourrait s’imaginer, les individus les plus grands ne sont pas les mieux connus. À Mayotte, plusieurs espèces de grande taille se sont avérées nouvelles pour la science et endémiques de l’île. C’est le cas notamment de Sechelleptus arborivagus,une nouvelle espèce décrite à l’occasion de cet inventaire. Le projet a été cofinancé par le ministère de la Transition écologique et solidaire (MTES-France) et le Musée royal de l’Afrique centrale (MRAC-Belgique).
Article Reference Editorial
Inproceedings Reference Integrating field data to parameterize a larval transport model of sole and improve knowledge on connectivity in the North Sea
Inproceedings Reference GeoConnect³d Cross-border, cross-thematic multiscale framework for combining geological models and data for resource appraisal and policy support: WP4 - Pannonian Basin
Inproceedings Reference GeoConnect³d Cross-border, cross-thematic multiscale framework for combining geological models and data for resource appraisal and policy support: WP3 - Roer-to-Rhine (R2R)
Inproceedings Reference GeoConnect³d Cross-border, cross-thematic multiscale framework for combining geological models and data for resource appraisal and policy support
Inbook Reference Le site gaulois de La Roche Albéric à Couvin (Namur)
Article Reference A new species of Platylomia Stål, 1870 (Hemiptera: Cicadidae) from Vietnam, with a key to species
Article Reference The tempo of cetacean cranial evolution
Article Reference High gene flow in polar cod ( Boreogadus saida) from West‐Svalbard and the Eurasian Basin
Article Reference Quantarctica, an integrated mapping environment for Antarctica, the Southern Ocean, and sub-Antarctic islands
Article Reference Antarctic ecosystem responses following ice‐shelf collapse and iceberg calving: Science review and future research
Article Reference Responses of Southern Ocean Seafloor Habitats and Communities to Global and Local Drivers of Change
Knowledge of life on the Southern Ocean seafloor has substantially grown since the beginning of this century with increasing ship-based surveys and regular monitoring sites, new technologies and greatly enhanced data sharing. However, seafloor habitats and their communities exhibit high spatial variability and heterogeneity that challenges the way in which we assess the state of the Southern Ocean benthos on larger scales. The Antarctic shelf is rich in diversity compared with deeper water areas, important for storing carbon (“blue carbon”) and provides habitat for commercial fish species. In this paper, we focus on the seafloor habitats of the Antarctic shelf, which are vulnerable to drivers of change including increasing ocean temperatures, iceberg scour, sea ice melt, ocean acidification, fishing pressures, pollution and non-indigenous species. Some of the most vulnerable areas include the West Antarctic Peninsula, which is experiencing rapid regional warming and increased iceberg-scouring, subantarctic islands and tourist destinations where human activities and environmental conditions increase the potential for the establishment of non-indigenous species and active fishing areas around South Georgia, Heard and MacDonald Islands. Vulnerable species include those in areas of regional warming with low thermal tolerance, calcifying species susceptible to increasing ocean acidity as well as slow-growing habitat-forming species that can be damaged by fishing gears e.g., sponges, bryozoan, and coral species. Management regimes can protect seafloor habitats and key species from fishing activities; some areas will need more protection than others, accounting for specific traits that make species vulnerable, slow growing and long-lived species, restricted locations with optimum physiological conditions and available food, and restricted distributions of rare species. Ecosystem-based management practices and long-term, highly protected areas may be the most effective tools in the preservation of vulnerable seafloor habitats. Here, we focus on outlining seafloor responses to drivers of change observed to date and projections for the future. We discuss the need for action to preserve seafloor habitats under climate change, fishing pressures and other anthropogenic impacts.
Article Reference Southern Ocean Food Web Modelling: Progress, Prognoses, and Future Priorities for Research and Policy Makers
Graphical Abstract Graphical summary of multiple aspects of Southern Ocean food web structure and function including alternative energy pathways through pelagic food webs, climate change and fisheries impacts and the importance of microbial networks and benthic systems. , Globally important services are supported by Southern Ocean ecosystems, underpinned by the structure, function, and dynamics of complex interconnected and regionally distinctive food webs. These food webs vary in response to a combination of physical and chemical processes that alter productivity, species composition and the relative abundance and dynamics of organisms. Combined with regional and seasonal variability, climate-induced changes and human activities have and are expected to continue to drive important structural and functional changes to Southern Ocean food webs. However, our current understanding of food web structure, function, status, and trends is patchy in space and time, and methods for systematically assessing and comparing community-level responses to change within and across regional and temporal scales are not well developed. Insights gained from food web modelling studies—ranging from theoretical analyses of ecosystem resilience and adaptation, to qualitative and quantitative descriptions of the system—can assist in resolving patterns of energy flow and the ecological mechanisms that drive food web structure, function, and responses to drivers (such as fishing and climate change). This understanding is required to inform robust management strategies to conserve Southern Ocean food webs and the ecosystem services they underpin in the face of change. This paper synthesises the current state of knowledge regarding Southern Ocean pelagic food webs, highlighting the distinct regional food web characteristics, including key drivers of energy flow, dominant species, and network properties that may indicate system resilience. In particular, the insights, gaps, and potential integration of existing knowledge and Southern Ocean food web models are evaluated as a basis for developing integrated food web assessments that can be used to test the efficacy of alternative management and policy options. We discuss key limitations of existing models for assessing change resulting from various drivers, summarise priorities for model development and identify that significant progress could be made to support policy by advancing the development of food web models coupled to projected biogeochemical models, such as in Earth System models.
Article Reference From Data to Marine Ecosystem Assessments of the Southern Ocean: Achievements, Challenges, and Lessons for the Future
Southern Ocean ecosystems offer numerous benefits to human society and the global environment, and maintaining them requires well-informed and effective ecosystem-based management. Up to date and accurate information is needed on the status of species, communities, habitats and ecosystems and the impacts of fisheries, tourism and climate change. This information can be used to generate indicators and undertake assessments to advise decision-makers. Currently, most marine assessments are derivative: reliant on the review of published peer-reviewed literature. More timely and accurate information for decision making requires an integrated Marine Biological Observing and Informatics System that combines and distributes data. For such a system to work, data needs to be shared according to the FAIR principles (Findable, Accessible, Interoperable, and Reusable), use transparent and reproducible science, adhere to the principle of action ecology and complement global initiatives. Here we aim to provide an overview of the components of such a system currently in place for the Southern Ocean, the existing gaps and a framework for a way forward.
 Help


 
reference(s)

 
 
add or import
2025
add or import
2025 PDFs directly available
add or import
2024
add or import
2024 PDFs directly available
add or import
2023
add or import
2023 PDFs directly available
add or import
2022
add or import
2022 PDFs directly available
add or import
2021
add or import
2021 PDFs directly available
add or import
2020
add or import
2019
add or import
2018
add or import
2017
add or import
2016
add or import
before 2016
add or import
before RBINS
add or import
after RBINS
   


   
 
PDF One Drive Repository
 
Add in the year folder
2024 PDFs directly available