Skip to content. | Skip to navigation

Personal tools

You are here: Home / RBINS Staff Publications / Search publications of the members of the Royal Belgian institute of natural Sciences

Search publications of the members of the Royal Belgian institute of natural Sciences

Article Reference Magura Cave, Bulgaria: A multidisciplinary study of Late Pleistocene human palaeoenvironment in the Balkans
Abstract Two trenches excavated at Magura Cave, north-west Bulgaria, have provided Late Pleistocene lithic artefacts as well as environmental evidence in the form of large and small mammals, herpetofauna and pollen recovered from Crocuta coprolites. One of the trenches also has a visible tephra layer which has been confirmed as representing the major Campanian Ignimbrite eruption and is accurately dated at the source area to 39,280 ± 55 yrs and radiocarbon determinations have added to chronological resolution at the site. The palaeoenvironment of the region during the Late Pleistocene is discussed in the context of hominin presence and shows a mosaic landscape in a region considered a crucial refugium for both plants and mammals, including hominins.
Article Reference Charred olive stones: experimental and archaeological evidence for recognizing olive processing residues used as fuel
After extracting oil from olives a residue is left usually referred to as the olive oil processing residue (OPR). This study explores the way in which ancient societies may have used OPR as fuel for fires to generate heat and the various issues that are related to the residues of this fuel. After drying, the high heating value and structure of OPR makes it an excellent and efficient fuel. Upgrading OPR further, through thermal conversion or charring, provides an even more efficient fuel (COPR), with a hotter and smoke free flame, a higher heating value and which is lighter in mass and thus easier to transport. After a fire is extinguished two types of remains of the fuel are left i.e. char and ash. Analyses on both remains, recovered from archaeological deposits, could be used as a source of information on fuel utilization. Laboratory experiments on charred modern OPR and stones show that by measuring their reflectance and analyzing their structure under reflected light microscopy, OPR and COPR can be distinguished in the charred material recovered from three archaeological sites in Greece and Syria. Based on these investigations it is suggested that on the three sites COPR was used as fuel. Ash, sampled together with the char, provides the possibility of investigating if other types of fuel were used, apart from OPR or COPR. On the investigated sites no ash was collected, but the analysis of the modern OPR showed that the properties of its ash could be used to distinguish it from other types of fuel. Ash from modern OPR and olive stones showed the presence of phytoliths. The often discussed issue related to the sharpness and smoothness of the edges of charred fragmented olive stones was investigated. The results showed that this is not a reliable criterion for recognizing olive oil production. It is recommended that in addition to the identification of the botanical material more properties of the remains of fuels should be analysed. To prevent destroying and losing char and ash as a result of excavation activities such as flotation and sieving, special measures have to be taken. The results show that analysing char and ash may provide valuable information on the (pyro)technology practised in ancient societies.
Article Reference A new record of Messapicetus from the Pietra leccese (late Miocene, southern Italy): antitropical distribution in a fossil beaked whale (Cetacea, Ziphiidae)
Inproceedings Reference Extreme wave deposits in coastal Lake Hamana, Shizuoka Prefecture, Japan: a first step towards the extraction of a continuous tsunami inundation history
Inproceedings Reference Nankai Trough (Japan) palaeoseismology: progress since the 2011 Tōhoku earthquake
Inproceedings Reference A history of mass transport complexes related to eruptions and earthquake shaking: the case of Lake Motosu (Japan)
Inproceedings Reference H3O – a better understanding of Campine cross-border Cenozoic stratigraphy
Inproceedings Reference Pleistocene gravels on the Belgian offshore investigated for composition and provenance, towards a reassessment of the transport models
Proceedings Reference Belqua annual workshop, abstract book, 14pp.
Inproceedings Reference An extraordinary new site to study upper Frasnian cephalopods during the onset of anoxia in the Dinant basin.
Article Reference Ecological niche of Neanderthals from Spy Cave revealed by nitrogen isotopes of individual amino acids in collagen
This study provides a refined view on the diet and ecological niche of Neanderthals. The traditional view is that Neanderthals obtained most of their dietary protein from terrestrial animals, especially from large herbivores that roamed the open landscapes. Evidence based on the conventional carbon and nitrogen isotopic composition of bulk collagen has supported this view, although recent findings based on plant remains in the tooth calculus, microwear analyses, and small game and marine animal remains from archaeological sites have raised some questions regarding this assumption. However, the lack of a protein source other than meat in the Neanderthal diet may be due to methodological difficulties in defining the isotopic composition of plants. Based on the nitrogen isotopic composition of glutamic acid and phenylalanine in collagen for Neanderthals from Spy Cave (Belgium), we show that i) there was an inter-individual dietary heterogeneity even within one archaeological site that has not been evident in bulk collagen isotopic compositions, ii) they occupied an ecological niche different from those of hyenas, and iii) they could rely on plants for up to ∼20\% of their protein source. These results are consistent with the evidence found of plant consumption by the Spy Neanderthals, suggesting a broader subsistence strategy than previously considered.
Inproceedings Reference Reservoir capacity assessment and ranking of potential targets for geological storage of CO2 in Austria
Inproceedings Reference CO2-enhanced oil recovery in the North Sea region and its importance for Belgium
Inproceedings Reference Measuring the amount of CO2 in oversaturated waters by mass balance: an overview of trials and errors
Inproceedings Reference Board games as scientific communication tools for black-box methodologies: the principles of the geo-techno-economic PSS III simulator translated into an interactive educational game
Inproceedings Reference Cartography of the Belgian monuments at risk via PSI analysis of the ground movements, the GEPATAR project
Inproceedings Reference audio/x-realaudio Time-series analysis of SAR images for detecting ground subsidence in the Scheldt estuary
Incollection Reference chemical/x-molconn-Z Overview of the ground mouvements highlighted by the Persistent Scatterer Technique (PSI) in Belgium
Article Reference Genesis of the vein-type tungsten mineralization at Nyakabingo (Rwanda) in the Karagwe–Ankole belt, Central Africa
The vein-type tungsten deposit at Nyakabingo in the central Tungsten belt of Rwanda is located in the eastern flank of the complex Bumbogo anticlinal structure. The host rock is composed of alternating sequences of sandstones, quartzites, and black pyritiferous metapelitic rocks. Two types of W-mineralized quartz veins have been observed: bedding-parallel and quartz veins that are at high angle to the bedding, which are termed crosscutting veins. Both vein types have been interpreted to have been formed in a late stage of a compressional deformation event. Both vein types are associated with small alteration zones, comprising silicification, tourmalinization, and muscovitization. Dating of muscovite crystals at the border of the veins resulted in a maximum age of 992.4 ± 1.5 Ma. This age is within error similar to the ages obtained for the specialized G4 granites (i.e., 986 ± 10 Ma). The W-bearing minerals formed during two different phases. The first phase is characterized by scheelite and massive wolframite, while the second phase is formed by ferberite pseudomorphs after scheelite. These minerals occur late in the evolution of the massive quartz veins, sometimes even in fractures that crosscut the veins. The ore minerals precipitated from a H2O–CO2–CH4–N2–NaCl–(KCl) fluid with low to moderate salinity (0.6–13.8 eq. wt% NaCl), and minimal trapping temperatures between 247 and 344 °C. The quartz veins have been crosscut by sulfide-rich veins. Based on the similar setting, mineralogy, stable isotope, and fluid composition, it is considered that both types of W-mineralized quartz veins formed during the same mineralizing event. Given the overlap in age between the G4 granites and the mineralized quartz veins, and the typical association of the W deposits in Rwanda, but also worldwide, with granite intrusions, W originated from the geochemically specialized G4 granites. Intense water–rock interaction and mixing with metamorphic fluids largely overprinted the original magmatic-hydrothermal signature.
Inproceedings Reference The map of the Brabant Massif for offshore Belgium
The cartographic boundary of the Brabant Massif in the northwest is the North Sea, which is an observational limit. Nevertheless the Lower Palaeozoic rocks continue as part of a larger unit, referred to as the Anglo-Brabant Deformation Belt. Maps of the Brabant Massif largely rely on borehole data. The latest map of the Brabant Massif (Piessens et al., 2005) uses structural concepts and direct information, rather than geophysical information. Nevertheless, an aeromagnetic survey and gravimetric data corroborate the large scale distribution of the units. This map is extrapolated to the off-shore territory of Belgium. Direct information from drillings is not available for the off-shore region, and it is therefore not possible to draw this map at the same stratigraphic resolution. The formations are therefore grouped into Cambrian, Ordovician and Silurian units. Magnetic susceptibility is high for the Cambrian, which allows tracing their continuation from on-shore to off-shore. The formations at subcrop level along the central axis of the Brabant Massif are on-shore Cambrian in age, but young in a WNW direction. Also the magnetic pattern becomes less intense, likely corresponding to an increasing depth of the more magnetic lower Cambrian units. This trend continues off-shore, indicating that the Cambrian units disappears at subcrop level. Superimposed on this general trend an aeromagnetic anomaly about 15 km off-shore of Ostend marks the probable local reappearance of the Tubize Formation. A secondary and less continuous Cambrian axis passes near Diksmuide. A second isolated off-shore aeromagnetic anomaly, indicative of the Cambrian unit, lies along the trace of this secondary axis. The gravimetric map shows a low gravimetric anomaly of which the circular shape suggests a genetic link with the chain of gravimetric lows that underlie the southern part of the on-shore part of the Brabant Massif. The higher densities in the northern part of the off-shore territory confirm, in continuation of the on-shore formation boundaries, the presence of the Silurian unit. The validity of the inferred distribution of the stratigraphic units was verified with the structural 3D concept that was developed for the on-shore part of the Brabant Massif, concluding that the inferred distribution of the geological units is in agreement with the structural model derived on-shore. It for example explains the positions of the two magnetic anomalies relative to each another. A central element in the structural model is the Asquempont Detachment System of which a limited number of possible traces is possible.
 Help


 
reference(s)

 
 
add or import
2023
add or import
2023 PDFs directly available
add or import
2022
add or import
2022 PDFs directly available
add or import
2021
add or import
2021 PDFs directly available
add or import
2020
add or import
2019
add or import
2018
add or import
2017
add or import
2016
add or import
before 2016
add or import
before RBINS
add or import
after RBINS
   


   
 
PDF One Drive Repository
 
Add in the year folder