Search publications of the members of the Royal Belgian institute of natural Sciences
- Sustainability impact assessment of deep subsurface use in Flanders
- Frontal sinuses and human evolution
- The frontal sinuses are cavities inside the frontal bone located at the junction between the face and the cranial vault and close to the brain. Despite a long history of study, understanding of their origin and variation through evolution is limited. This work compares most hominin species’ holotypes and other key individuals with extant hominids. It provides a unique and valuable perspective of the variation in sinuses position, shape, and dimensions based on a simple and reproducible methodology. We also observed a covariation between the size and shape of the sinuses and the underlying frontal lobes in hominin species from at least the appearance of Homo erectus. Our results additionally undermine hypotheses stating that hominin frontal sinuses were directly affected by biomechanical constraints resulting from either chewing or adaptation to climate. Last, we demonstrate their substantial potential for discussions of the evolutionary relationships between hominin species. Variation in frontal sinus shape and dimensions has high potential for phylogenetic discussion when studying human evolution.
- Description of a new species belonging to the Aegosomatini tribe (Coleoptera, Cerambycidae, Prioninae)
- Do man-made structures impact the connectivity patterns of hard substrate species in the North Sea?
- On Haplotaxis Homeister, 1843 (Annelida, Clitellata)
- Telemetry for migratory bats – a feasibility study
- In recent years, research into the occurrence of bats at the Dutch North Sea has shown that there is regular seasonal migration over sea. However, so far, little is known about their migration ecology, the fatality risks at offshore wind turbines, and the number of individuals migrating over sea. Since the Dutch government wants to boost the further development of wind energy production in the southern North Sea, the Ministry of Economic Affairs commissioned to Rijkswaterstaat a Wind at Sea Ecological Programme (in Dutch: Wozep). This study, as part of the Wozep-project Behaviour and Collision Risk of Bats (Bats_2), investigates how telemetry can be applied to gain insight into migratory movements of bats over land and over sea and individual bat behaviour near and in offshore wind farms. To find out whether it is wise to continue and further develop telemetry research in the context of the Wozep programme, we first identified potential telemetry methods for small bats based on a desk study and selected the most promising method for the application of telemetry. Members of the team attended an international workshop on telemetry in Lund (Sweden) to gather practical technical knowledge, gain insight in data-management standards, and increase their international network. Several field tests were conducted to test the equipment and explore the possibilities of tracking. Finally, suitable locations for bat trapping in bat boxes and for the use of a Heligoland trap were identified. There are several options to track bats with radio telemetry during their migration at the coast and over sea. However, for long-term monitoring of multiple individuals, establishing a grid of stationary receivers is the only feasible option. Eight field tests were carried out to test the performance of the technical infrastructure. Each of the tests was unique and set up to test the signal strength/detection range for a certain type of antenna or a certain transmitter/receiver constellation. We showed that detections over at least 6 km are possible, and likely more than 10 km can be achieved. Precondition is that the receiving stations must be installed at high structures (lighthouses, buildings, masts) or hills, installing them a few meters off ground level will lead to detection ranges just over one km. Furthermore we explored the possibilities of calculating movement tracks with a setup of several receivers using different estimation methods. These experiments indicated that a relatively high accuracy (of c. 100 m) can be reached estimating the location when signals of different receiving stations are combined. It is likely that the accuracy can be improved by estimating the bearings of the received signals based on the signal strength of different antennas. Even further improvement seems possible by assessing the (likely) flight route with a state-space model. There are plenty of locations with bat boxes, especially in the province of Noord-Holland, where potentially hundreds of bats can be captured during migration stopovers, though it is not known how many of these are likely to be migrants. In addition, we identified four locations where actively migrating bats can potentially be captured with an Heligoland trap. In conclusion, we are confident that telemetry can be successfully applied to study migratory movements of bats over land and over sea and individual bat behaviour near and in offshore wind farms. Joining a wildlife tracking system like Motus (Canada) in order to enlarge the data collection, is highly recommended. Motus-members can get detections from both
- Spatial and temporal occurrence of bats in the southern North Sea area
- A multidisciplinary analysis of cesspits from late medieval and post-medieval Brussels, Belgium: diet and health in the fourteenth-seventeenth century
- The fill of two late and post-medieval cesspits in Brussels was analyzed using a multidisciplinary approach, including the study of macrobotanical and faunal remains, pollen, and parasite eggs. These show that in the diet plant foods were dominated by cereals while the animal remains document the consumption of mainly fish and birds. The presence of foods that were luxuries at that time would indicate that these were affluent households, although with an admixture of meals related to those of lower socioeconomic status. Seven species of helminth and protozoal parasites were identified, with dominance of those species spread by poor sanitation.
- La pèche à Bruxelles au XVe siècle. Nouvelles données archéologiques
- Progressive increase in organic-matter burial and preservation from the "Weissert" event to the Faraoni event in Umbria-March (Central-Italy)
- 1. Abstract The Cretaceous experienced several Oceanic Anoxic Events (or OAEs). Anoxia in these events is indicated by deposits of black shales, enriched in organic matter (OM) compared to the layers below and above, strong carbon isotope perturbations, often with a negative excursion at the onset of the OAEs followed by a positive excursion, and concentration of redox-sensitive trace-elements (RSTE) (Baudin & Riquier 2014). Considered to be the earliest Cretaceous OAE (Baudin & Riquier, 2014), the Faraoni level is a short event first defined in the late Hauterivian sections of the Umbria-Marche Apennines (Cecca et al. 1994). It presents black shales enriched in OM with high concentrations of RSTE but lacks an important positive δ13C excursion (Baudin & Riquier, 2014). This event follows the “Weissert” event, a ca. 2.3 million year carbon isotope perturbation event taking place during the late Valanginian-early Hauterivian (Sprovieri et al. 2006). This latter event is not considered to be an OAE, as anoxia indicators such as RSTE high concentrations or OM-rich layers are not observed at least in the western Tethys (Westermann et al. 2010). In order to link those two seemingly opposite events, sections of Late Valanginian to Early Barremian age were studied in the Umbria-Marche Apennines, Italy. Lesser magnitude black shale preceding the Faraoni level were identified. They were correlated in two sections using magnetostratigraphy (Fig. 1). Rock-Eval and palynofacies analyses reveal that they are part of a longer-term trend of increased organic matter preservation and burial. In the black shales this is hinted by a progressive increase of total organic carbon (TOC) content, of the hydrogen index (HI), and by increasingly better preserved amorphous organic matter (AOM) towards the Faraoni level (Fig.1). This increase starts in the upper part of the M5n magnetochron. This is coeval with an increase in mercury concentration interpreted to be due to volcanic activity that was measured among others in the Bosso section (Charbonnier et al., 2018). Palaeoenvironmental differences between the Bosso and Frontone sections is shown by differences in palynomorphs and in organic matter preservation, and by the presence of slumps found in Frontone only. Figure 1 : synthetic log of the Bosso and Frontone sections, with magnetostratigraphy and Rock Eval 6 results (TOC and HI) 2. References Baudin, F. & Riquier, L., 2014. The Late Hauterivian Faraoni ‘Oceanic Anoxic Event’: An Update. Bulletin de La Société Géologique de France, 185, 6, 359‑77. Cecca, F., Marini, A., Pallini, G., Baudin, F., & Begouen, V., 1994. A guide level of the uppermost Hauterivian (Lower Cretaceous) in the pelagic succession of Umbria Marches Apennines (Central Italy): the Faraoni level, Rivista Italiana di Paleontologia e Stratigrafia, 99, 4. Sprovieri, M., Coccioni, R., Lirer, F., Pelosi, N. & Lozar F., 2006. Orbital Tuning of a Lower Cretaceous Composite Record (Maiolica Formation, Central Italy). Paleoceanography, 21, 4. Westermann, S., Föllmi, K.B., Adatte, T., Matera, V., Schnyder, J., Fleitmann, D., Fiet, N., Ploch, I. & Duchamp-Alphonse S., 2010. The Valanginian δ13C Excursion May Not Be an Expression of a Global Oceanic Anoxic Event. Earth and Planetary Science Letters, 290, 1‑2, 118‑31. Charbonnier, G., Godet, A., Bodin, S., Adatte, T. & Föllmi, K. B. 2018. Mercury anomalies, volcanic pulses, and drowning episodes along the northern Tethyan margin during the latest Hauterivian-earliest Aptian. Palaeogeography. Palaeoclimatoly. Palaeoecology.
- Using next-generation sequencing to improve DNA barcoding: lessons from a small-scale study of wild bee species (Hymenoptera, Halictidae)
- New material of the small raoellid artiodactyl Metkatius kashmiriensis Kumar and Sahni, 1985 (Mammalia) from the middle Eocene of the Kalakot area, Rajouri District, Jammu and Kashmir, India
- New material of the small raoellid artiodactyl Metkatius kashmiriensis is reported from the middle Eocene of the Upper Subathu Formation in the Kalakot area, Jammu and Kashmir, northwest Himalaya, India. The fossil material consists of numerous mandibular and maxillary fragments and isolated teeth, mainly belonging to juvenile specimens. It documents the poorly known dental morphology of M. kashmiriensis and provides an overview of its intraspecific variation, allowing to redefine its diagnosis. M. kashmiriensis is characterized by a particularly small size compared with other raoellid species, and by bunodont molars with moderately marked transverse lophs. The M/1–2 are much longer than wide and display characters similar to those of Rajouria gunnelli, such as the presence of a small paraconid and a mesial mesiostylid. The P/4 bears distally a small hypoconid, which appears to be unique in Raoellidae. The description of the new material also allows to document the poorly known morphology of the deciduous teeth of raoellids. The DP2/ is reported for the first time, and the DP/4 of M. kashmiriensis shows a morphology different from that of Indohyus, with the absence of mesial basin anterior to the paraconid and the primoconid. Contrary to what has recently been proposed, these results confirm that M. kashmiriensis is a valid species and not a synonym of Indohyus indirae, and highlight the great morphological diversity present within the Raoellidae during the middle Eocene in the Indian subcontinent.
- Contribution à l'étude de la faune des Prioninae du Laos (Coleoptera, Cerambycidae)
- A first glimpse into the biogeographic affinities of the shallow benthic communities from the sub-Antarctic Crozet archipelago
- Sub-Antarctic islands are expected to show a high degree of endemicity due to their remoteness. However, biogeographic affinities in the sub-Antarctic remain poorly understood, especially in the marine realm. Sub-Antarctic islands being at the crossroads between Antarctic and cold temperate regions, biodiversity characterization and biogeographic analyses are a priority for monitoring and rapidly assessing variations associated with environmental changes. One underexplored sub-Antarctic area is Crozet, a protected archipelago located halfway between Antarctica and South Africa. In this study, we investigated the shallow-water Crozet macrofaunal diversity, distribution patterns and biogeographic affinities based on the examination of fieldwork specimens via a thorough morphological identification and a genetic characterisation. The resulting dataset provides an important baseline for further studies and conservation strategies, compiling the first genetic and taxonomic database for the Crozet archipelago. In total, 100 morphotypes were found, belonging to nine different phyla, among whicharthropods(32), molluscs (18)and echinoderms (17) were the richest. Forty-seven morphotypes were identified to the species level, among which 20 were reported in Crozet for the first time. This confirms that Crozet is a poorly known region, even compared to other sub-Antarctic areas. A large proportion of species (62%) had circum Southern Ocean or circum sub Antarctic distributions. These species were mostly shared with Kerguelen (72%), the Magellan Province (64%), and Prince Edward Islands (64%), confirming the patterns found in macroalgae and specific macrofaunal groups. However, this large-distribution statement needs to be counterbalanced by the detection (genetic data) of more restricted distributions than expected in four study cases (the tanaid Apseudes spectabilis, the nudibranch Doris kerguelenensis, the polychaete Neanthes kerguelensis and the chiton Hemiarthrum setulosum). Considering that most morphotypes had no genetic data available from other regions, the proportion of morphotypes with restricted distribution is likely to increase alongside future investigations. In addition, we also found a few cases of unrecognized diversity that might lead to the descriptions of new species, some likely to be endemic to Crozet (e.g., within the polychaete genus Harmothoe and the bryozoan genus Antarctothoa). Altogether, this stresses the need to maintain conservation efforts in Crozet and pursue integrative investigations in order to highlight and protect its unusual diversity
- Integrating genetic connectivity and local adaptation in effective Marine Protected Area design: a case study on Southern Ocean Trematomus fishes.
- Polar ecosystems support a distinctive, cold-adapted biodiversity that faces significant threats from rapid environmental changes and escalating human impacts. To effectively manage and conserve these living resources, multi-scale data on connectivity and adaptation are essential. Marine protected areas (MPAs) are most effective when designed as interconnected networks that account for both functional diversity and connectivity within and among species. In this study, 607 individuals from ten Trematomus species were analyzed through ddRAD sequencing, yielding thousands of genomic markers to examine patterns of divergence and connectivity on the Southern Ocean shelf, both within and between species. Genomic SNPs showing evidence of selection, identified as "outlier loci," were further analyzed to explore potential local adaptations to varying environmental conditions. Population structure analyses of four species — T. loennbergii, T. eulepidotus, T. scotti, and T. newnesi — indicate extensive dispersal across the Weddell Sea and along the West Antarctic coast, likely facilitated by the Weddell Sea Gyre and the Antarctic Coastal Current. A genetic discontinuity was detected near the Filchner Trough in several species, likely due to the strong outflow from the Filchner-Ronne ice shelf, which may isolate the trough region from the broader Weddell Sea habitat. Additionally, evidence of previously unrecognized cryptic diversity was observed in T. eulepidotus and T. loennbergii. These findings contribute to our understanding of diversity, connectivity, and adaptation on the Southern Ocean shelf, a critical foundation for conservation amid unprecedented global change.
- Is Antarctica an evolutionary incubator? Phylogenetic comparative study of the amphipod family Iphimediidae on the Antarctic shelf
- Around 40 million years ago, Antarctica’s geographic isolation led to a dramatic cooling of its marine shelf, causing many lineages to go extinct whilst others adapted and flourished. Among the successful ones is the amphipod family Iphimediidae. Here, we apply advanced phylogenetic, comparative, and morphometric methods to explore the evolutionary processes which generated the exceptional diversity of this clade. To this purpose, three types of data were collected: (1) a novel phylogeny of the family was reconstructed from a multigene molecular dataset, (2) 3D shape data were obtained by applying geometric morphometric methods on micro-CT scans, and (3) stable isotope ratios (δ13C and δ15N) were measured and used as proxy for trophic ecology. First, possible evolutionary correlations between mouthpart shapes and stable isotope ratios were examined. Significant correlations suggest that mouthpart shapes are adapted to the food source. Second, species boundaries were investigated using a combination of DNA-based delimitation methods and detailed morphological/morphometric analyses, revealing that Iphimediidae species diversity is greatly underestimated. Most described species were found to be complexes of multiple, morphologically similar species. Finally, changes in lineage diversification rates were explored alongside the evolution of morphological traits. Late bursts of lineage diversification (appr. 7-3 Mya) combined with a late partitioning of mouthparts’ shape diversity might result from the invasion of novel ecological niches. Plio-Pleistocene glacial cycles, which have been hypothesized to act as a diversity pump, might also have promoted such late diversification events in Antarctic iphimediids. This integrative approach, applied here for the first time in Antarctic invertebrates, enhances our understanding of the evolutionary dynamics shaping Antarctic shelf biodiversity.
- Is Antarctica an evolutionary incubator? Phylogenetic comparative study of the amphipod family Iphimediidae on the Antarctic shelf
- Around 40 million years ago, Antarctica’s geographic isolation led to a dramatic cooling of its marine shelf, causing many lineages to go extinct whilst others adapted and flourished. Among the successful ones is the amphipod family Iphimediidae. Here, we apply advanced phylogenetic, comparative, and morphometric methods to explore the evolutionary processes which generated the exceptional diversity of this clade. To this purpose, three types of data were collected: (1) a novel phylogeny of the family was reconstructed from a multigene molecular dataset, (2) 3D shape data were obtained by applying geometric morphometric methods on micro-CT scans, and (3) stable isotope ratios (δ13C and δ15N) were measured and used as proxy for trophic ecology. First, possible evolutionary correlations between mouthpart shapes and stable isotope ratios were examined. Significant correlations suggest that mouthpart shapes are adapted to the food source. Second, species boundaries were investigated using a combination of DNA-based delimitation methods and detailed morphological/morphometric analyses, revealing that Iphimediidae species diversity is greatly underestimated. Most described species were found to be complexes of multiple, morphologically similar species. Finally, changes in lineage diversification rates were explored alongside the evolution of morphological traits. Late bursts of lineage diversification (appr. 7-3 Mya) combined with a late partitioning of mouthparts’ shape diversity might result from the invasion of novel ecological niches. Plio-Pleistocene glacial cycles, which have been hypothesized to act as a diversity pump, might also have promoted such late diversification events in Antarctic iphimediids. This integrative approach, applied here for the first time in Antarctic invertebrates, enhances our understanding of the evolutionary dynamics shaping Antarctic shelf biodiversity.
- Genetic connectivity of Trematomus fishes in the Southern Ocean
- Polar ecosystems harbour a unique cold-adapted biodiversity that is threatened by rapid environmental change and increasing anthropogenic impact. In this context, collecting data on connectivity between populations is essential for supporting conservation management of living resources and ecosystems. Genetic connectivity is the extent to which populations in different parts of a species' geographical range are linked by the exchange of larvae, juveniles or adults (which are the vectors of genetic material). In the Southern Ocean, several Marine Protected Areas (MPAs) – large areas where human activities are restricted or prohibited to promote conservation – are established or under negotiations. Such MPAs are most effective if implemented as a network that considers genetic diversity and connectivity within and between species. In the present study, 607 individuals of ten Trematomus species were sequenced using reduced representation sequencing techniques. Thousands of genomic variants were used to investigate inter- and intraspecific patterns of divergence and connectivity across the Southern Ocean shelf. Population structure analyses of four different species (T. loennbergii, T. eulepidotus, T. scotti and T. newnesi) suggest long- range dispersal across the Weddell Sea and even along the entire West Antarctic coast that might be facilitated by the Weddell Sea Gyre and Antarctic Coastal current. A genetic break at the level of the Filchner Trough was observed in several species. The strong outflow from the Filchner-Ronne ice shelf may separate the trough area from the remaining Weddell Sea habitat. Finally, results suggest that previously undetected cryptic species may be present within both T. eulepidotus and T. loennbergii. Altogether, the present results contribute to the assessment of diversity and connectivity on the Southern Ocean shelf, which is imperative in view of unprecedented global change.
- COnservation management of POlar ecosystems (COPE project): using genomic approaches to study connectivity in Antarctic fishes and amphipods, across spatial and functional scales
- The unique cold-adapted ecosystems of the Southern Ocean are threatened by rapid environmental change and increasing anthropogenic impact. Marine protected areas (MPAs), areas of ocean where human activities are limited or prohibited, have been increasingly promoted as a tool for mitigating ocean threats and conserving biodiversity. National governments and the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) is progressing towards establishing a representative network of MPAs in the Southern Ocean. Connectivity is now widely recognized to be a crucial variable for the design and management of MPA networks through the effects that movements of individuals and genes have on population viability, metapopulation persistence, and resilience to disturbance. The understanding of connectivity patterns is required to prioritize the allocation of conservation effort towards, for instance, areas acting as central connection nodes in a network of MPAs. The COPE project aims to advance the understanding of genetic connectivity and adaptation in key benthic and pelagic Antarctic organisms (crustaceans and actinopterygian fishes) using population genomic approaches (ddRAD sequencing). Thousands of genomic variants were used in two model genera, the Charcotia amphipod and the Trematomus fishes, to provide estimates of neutral and adaptive genetic variation and structure at different trophic levels and at a circumpolar scale. The results of the COPE project will contribute to our understanding of the spatial and functional distribution of biological variation in the Southern Ocean, required to develop suitable management and conservation strategies through CCAMLR.
- Integration of genetic connectivity and local adaptation in the design of marine protected area in the Southern Ocean: a case study opf Trematomus fishes
- Polar ecosystems harbour a unique cold-adapted biodiversity that is threatened by rapid environmental change and increasing anthropogenic impact. In this context, multi-scale data on connectivity and adaptation are essential for supporting exploitation and conservation management of living resources and ecosystems. Notably, marine protected areas are most effective if implemented as a network that considers functional diversity and connectivity within and between species. In the present study, 607 individuals of ten Trematomus species were sequenced using ddRAD sequencing techniques. Thousands of genomic variants were used to investigate inter- and intraspecific patterns of divergence and connectivity across the Southern Ocean shelf. Moreover, genomic SNPs that showed evidence of selection (“outlier loci”) were used to explore potential local adaptation of the populations to different environmental conditions. Population structure analyses of four different species (T. loennbergii, T. eulepidotus, T. scotti and T. newnesi) suggest long- range dispersal across the Weddell Sea and even along the entire West Antarctic coast that might be facilitated by the Weddell Sea Gyre and Antarctic Coastal current. A genetic break at the level of the Filchner Trough was observed in several species. The strong outflow from the Filchner-Ronne ice shelf may separate the trough area from the remaining Weddell Sea habitat. Finally, results suggest that previously undetected cryptic diversity may be present within T. eulepidotus and T. loennbergii. Altogether, the present results contribute to the assessment of diversity, connectivity and adaptation on the Southern Ocean shelf, which is imperative in view of unprecedented global change.