Search publications of the members of the Royal Belgian institute of natural Sciences
- Developing priority variables (``ecosystem Essential Ocean Variables'' - eEOVs) for observing dynamics and change in Southern Ocean ecosystems
- Reliable statements about variability and change in marine ecosystems and their underlying causes are needed to report on their status and to guide management. Here we use the Framework on Ocean Observing (FOO) to begin developing ecosystem Essential Ocean Variables (eEOVs) for the Southern Ocean Observing System (SOOS). An eEOV is a defined biological or ecological quantity, which is derived from field observations, and which contributes significantly to assessments of Southern Ocean ecosystems. Here, assessments are concerned with estimating status and trends in ecosystem properties, attribution of trends to causes, and predicting future trajectories. eEOVs should be feasible to collect at appropriate spatial and temporal scales and are useful to the extent that they contribute to direct estimation of trends and/or attribution, and/or development of ecological (statistical or simulation) models to support assessments. In this paper we outline the rationale, including establishing a set of criteria, for selecting eEOVs for the SOOS and develop a list of candidate eEOVs for further evaluation. Other than habitat variables, nine types of eEOVs for Southern Ocean taxa are identified within three classes: state (magnitude, genetic/species, size spectrum), predator-prey (diet, foraging range), and autecology (phenology, reproductive rate, individual growth rate, detritus). Most candidates for the suite of Southern Ocean taxa relate to state or diet. Candidate autecological eEOVs have not been developed other than for marine mammals and birds. We consider some of the spatial and temporal issues that will influence the adoption and use of eEOVs in an observing system in the Southern Ocean, noting that existing operations and platforms potentially provide coverage of the four main sectors of the region - the East and West Pacific, Atlantic and Indian. Lastly, we discuss the importance of simulation modelling in helping with the design of the observing system in the long term.Regional boundary: south of 30°S. © 2016 The Authors.
- Lifestyle and Ice: The relationship between ecological specialization and response to Pleistocene climate change
- Major climatic changes in the Pleistocene had significant effects on marine organisms and the environments in which they lived. The presence of divergent patterns of demographic history even among phylogenetically closely-related species sharing climatic changes raises questions as to the respective influence of species-specific traits on population structure. In this work we tested whether the lifestyle of Antarctic notothenioid benthic and pelagic fish species from the Southern Ocean influenced the concerted population response to Pleistocene climatic fluctuations. This was done by a comparative analysis of sequence variation at the cyt b and S7 loci in nine newly sequenced and four re-analysed species. We found that all species underwent more or less intensive changes in population size but we also found consistent differences between demographic histories of pelagic and benthic species. Contemporary pelagic populations are significantly more genetically diverse and bear traces of older demographic expansions than less diverse benthic species that show evidence of more recent population expansions. Our findings suggest that the lifestyles of different species have strong influences on their responses to the same environmental events. Our data, in conjunction with previous studies showing a constant diversification tempo of these species during the Pleistocene, support the hypothesis that Pleistocene glaciations had a smaller effect on pelagic species than on benthic species whose survival may have relied upon ephemeral refugia in shallow shelf waters. These findings suggest that the interaction between lifestyle and environmental changes should be considered in genetic analyses. © 2015 Kašparová et al.
- Toward a new data standard for combined marine biological and environmental datasets - Expanding OBIS beyond species occurrences
- The Ocean Biogeographic Information System (OBIS) is the world's most comprehensive online, open-access database of marine species distributions. OBIS grows with millions of new species observations every year. Contributions come from a network of hundreds of institutions, projects and individuals with common goals: to build a scientific knowledge base that is open to the public for scientific discovery and exploration and to detect trends and changes that inform society as essential elements in conservation management and sustainable development. Until now, OBIS has focused solely on the collection of biogeographic data (the presence of marine species in space and time) and operated with optimized data flows, quality control procedures and data standards specifically targeted to these data. Based on requirements from the growing OBIS community to manage datasets that combine biological, physical and chemical measurements, the OBIS-ENV-DATA pilot project was launched to develop a proposed standard and guidelines to make sure these combined datasets can stay together and are not, as is often the case, split and sent to different repositories. The proposal in this paper allows for the management of sampling methodology, animal tracking and telemetry data, biological measurements (e.g., body length, percent live cover, ...) as well as environmental measurements such as nutrient concentrations, sediment characteristics or other abiotic parameters measured during sampling to characterize the environment from which biogeographic data was collected. The recommended practice builds on the Darwin Core Archive (DwC-A) standard and on practices adopted by the Global Biodiversity Information Facility (GBIF). It consists of a DwC Event Core in combination with a DwC Occurrence Extension and a proposed enhancement to the DwC MeasurementOrFact Extension. This new structure enables the linkage of measurements or facts - quantitative and qualitative properties - to both sampling events and species occurrences, and includes additional fields for property standardization. We also embrace the use of the new parentEventID DwC term, which enables the creation of a sampling event hierarchy. We believe that the adoption of this recommended practice as a new data standard for managing and sharing biological and associated environmental datasets by IODE and the wider international scientific community would be key to improving the effectiveness of the knowledge base, and will enhance integration and management of critical data needed to understand ecological and biological processes in the ocean, and on land. © De Pooter D et al.
- The Population History of Domestic Sheep Revealed by Paleogenomes
- Sheep was one of the first domesticated animals in Neolithic West Eurasia. The zooarchaeological record suggests that domestication first took place in Southwest Asia, although much remains unresolved about the precise location(s) and timing(s) of earliest domestication, or the post-domestication history of sheep. Here, we present 24 new partial sheep paleogenomes, including a 13,000-year-old Epipaleolithic Central Anatolian wild sheep, as well as 14 domestic sheep from Neolithic Anatolia, two from Neolithic Iran, two from Neolithic Iberia, three from Neolithic France, and one each from Late Neolithic/Bronze Age Baltic and South Russia, in addition to five present-day Central Anatolian Mouflons and two present-day Cyprian Mouflons. We find that Neolithic European, as well as domestic sheep breeds, are genetically closer to the Anatolian Epipaleolithic sheep and the present-day Anatolian and Cyprian Mouflon than to the Iranian Mouflon. This supports a Central Anatolian source for domestication, presenting strong evidence for a domestication event in SW Asia outside the Fertile Crescent, although we cannot rule out multiple domestication events also within the Neolithic Fertile Crescent. We further find evidence for multiple admixture and replacement events, including one that parallels the Pontic Steppe-related ancestry expansion in Europe, as well as a post-Bronze Age event that appears to have further spread Asia-related alleles across global sheep breeds. Our findings mark the dynamism of past domestic sheep populations in their potential for dispersal and admixture, sometimes being paralleled by their shepherds and in other cases not.
- Identificatie van de dierlijke resten van de collectie ‘Paleo-bot’ in het depot ‘De Pakhuizen’ (2024-01)
- Analyse van de dierlijke resten van Zandberg, Gent (2024-02)
- Analyse van de dierlijke resten van de Groeningeabdij, Kortrijk (2024-03)
- Colourful rivers: archaeobotanical remains of dye plants from fluvial deposits in late medieval towns in Belgium
- During the late medieval period, the southern low countries were among the most densely urbanised areas in Europe. The towns owned part of their growth and prosperity to the flourishing cloth industry, in which dyestuffs played an essential role. Throughout this period dye plants were intensively cultivated, traded on a large scale, and widely used by specialised craftsman organised in guilds. Due to the need for constant water supply and wastewater discharge, dyeing activities were often concentrated in the proximity of rivers. Although dyeing practices are well documented in late medieval historical sources, material evidence remains scarce. The aim of this presentation is to describe and discuss archaeobotanical finds of dye plants, recently found in urban fluvial deposits from Brussels and to put these in perspective with finds from other towns in the area. In 2019 a large excavation in the city centre of Brussels revealed the remains of the late medieval port. Besides the discovery of impressive quay walls, meters thick excellently preserved fluvial deposits were excavated and extensively sampled. One of the most remarkable characteristics of the macrobotanical assemblages dating from the 13th to the 15th century is the presence of numerous weld (Reseda luteola) seeds and madder (Rubia tinctoria) root fragments, found in nearly all studied samples. Several samples also contained woad (Isatis tinctoria) pod fragments. These three species are considered as the most important medieval dye plants in the region. Additionally, fruits and flower head fragments of fuller's teasel (Dipsacus sativus) were observed in most samples. Most likely all these plant remains must be interpreted as waste from textile working, discarded in the urban waters.
- Environmental Impacts of Offshore Wind Farms in the Belgian Part of the North Sea: Getting ready for offshore wind farm expansion in the North Sea.
- Turbine size impacts the number of seabird collisions per installed megawatt and offers possibilities for mitigation.
- As the offshore wind energy technology is rapidly progressing and because wind turbines at sea have a relatively short life span, repowering scenarios are already being discussed for the oldest wind farms. Ongoing developments result in larger wind turbines and an increased open airspace between turbines. Despite taller towers having larger rotor swept zones and therefore a higher collision risk area compared to smaller-sized turbines, there is increasing evidence that fewer but larger, more power-efficient turbines may have a lower collision rate per installed megawatt. As such, turbine size can offer an opportunity to mitigate seabird fatalities by increasing the clearance below the lower rotor tip. We assessed the seabird collision risk for a hypothetical repowering scenario of the first offshore wind farm zone in Belgian waters with larger turbines and the effect of an additional increase in hub height on that theoretical collision risk. For all species included in this exercise, the estimated collision risk decreased in a repowering scenario with 15 MW turbines (40.4% reduction on average) because of higher clearance between the lower tip of the turbine rotor and the sea level, and the need for a lower number of turbines per km². Increasing the hub height of those 15 MW turbines with 10 m, further decreases the expected number of seabird collisions with another 37% on average. However, terrestrial birds and bats also migrate at sea and the effect of larger turbines on these taxa is less clear. Possibly even more terrestrial birds and bats are at risk of collision compared to the current turbines. So, while larger turbines and increasing the hub height can be beneficial for seabirds, this likely needs to be applied in combination with curtailment strategies, which stop the turbines during heavy migration events, to reduce the impact on other species groups.
- CROW: Visualize bird migration in your browser
- Every spring and autumn, millions of birds migrate over Europe. They mainly do this at high altitudes and at night, making this phenomenon largely invisible to us. But not for weather radars! We developed the open source web application “CROW” so you can explore these data directly in your browser. CROW pulls vertical profile data (vpts) from a public repository, calculates migration traffic rate (MTR), bird density and other variables, and visualizes these as interactive charts. The application can be hosted on a static file server and only visualizes data from one radar at a time, making it highly portable and scalable. CROW was jointly developed by the Research Institute for Nature and Forest (INBO) and the Royal Meteorological Institute of Belgium (RMI) in collaboration with the Royal Belgian Institute for Natural Sciences (RBINS), with financial support from the Belgian Science Policy Office (BelSPO valorisation project CROW). It is deployed at https://www.meteo.be/birddetection to show bird migration in real time across the Benelux. We are planning to deploy it for data in the ENRAM data repository (https://enram.github.io/data-repository/) as well.
- Upper Oligocene lithostratigraphic units and the transition to the Miocene in Belgium: can we bring the Dutch, Belgian and German practice in line by using a common nomenclature20?
- The non-marine Pliocene units in the Belgian Campine and the Roer Valley Graben
- Lithostratigraphic identification sheet Veldhoven Formation
- Lithostratigraphic identification sheet Voort Member (Veldhoven Formation)
- Lithostratigraphic identification sheet Wintelre Member (Veldhoven Formation)
- Lithostratigraphic identification sheet Someren Member (Veldhoven Formation)
- The potential of high-resolution stable isotope records in the bivalve Angulus benedeni benedeni's shells to investigate Pliocene seasonality
- Obtaining temperature data from the mid-Piacenzian warm period (mPWP) is a key factor in understanding the coming changes brought upon by anthropogenic climate change. The mPWP, a high-CO2 world with a paleogeography similar to modern times, has been used to validate and improve model retrodictions, which in turn enables assessing the prediction strength of these models1. For the first time, stable isotope analysis has been applied to the extinct tellinid bivalve Angulus benedeni benedeni, originating from the mid-Piacenzian of the Lillo Formation of Belgium in the southern North Sea basin. Multi-annual oxygen isotope records with a seasonal resolution obtained from its shell indicate that this species could live for up to a decade and formed monthly growth increments. From this oxygen isotope record, a clumped-isotope-based mean annual temperature of 12.6 ± 3.6°C was reconstructed. This is 2.1°C warmer than today2,3, 2.6°C warmer than the pre-industrial North Sea2, and in line with global Pliocene temperature estimates of +2-4°C compared to the pre-industrial climate4,5. The pristine nature of the aragonitic shell material was verified through electron backscatter diffraction analysis (EBSD), and backed up by light microscopy, X-ray diffraction, and X-ray fluorescence. The various microstructures as obtained from the EBSD maps have been described, and they provide a template of pristine A. benedeni benedeni material to which potentially altered shells may be compared. The bivalve A. benedeni benedeni is suitable for high resolution isotope-based paleoclimatic reconstruction and it can be used to unravel the marine conditions in the Pliocene North Sea basin at a seasonal scale, yielding enhanced insight into imminent western European climate conditions.1Dowsett, H. J. et al. Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models. Nature Climate Change 2, 365-371 (2012). https://doi.org/10.1038/NCLIMATE1455 2Emeis, K.-C. et al. The North Sea — A shelf sea in the Anthropocene. Journal of Marine Systems 141, 18-33 (2015). https://doi.org/10.1016/j.jmarsys.2014.03.012 3Locarnini, R. A. et al. World Ocean Atlas 2018, Volume 1: Temperature. NOAA Atlas NESDIS 81. A. Mishonov, Technical Editor. 52pp. (2019). https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/ 4Dowsett, H. J. et al. Sea surface temperature of the mid-Piacenzian ocean: a data-model comparison. Scientific reports 3, 1-8 (2013). https://doi.org/10.1038/srep02013 5Haywood, A. M. et al. The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity. Clim. Past 16, 2095-2123 (2020). https://doi.org/10.5194/cp-16-2095-2020
- A new Late Devonian Dunkleosteus from Lompret, southern Belgium
- A DIGITAL CEPHALOPOD WORLD: micro-CT imaging in the study of Cretaceous Cephalopod