Skip to content. | Skip to navigation

Personal tools

You are here: Home / RBINS Staff Publications / Search publications of the members of the Royal Belgian institute of natural Sciences

Search publications of the members of the Royal Belgian institute of natural Sciences

Article Reference Using Hyperspectral Remote Sensing to Monitor Water Quality in Drinking Water Reservoirs
At the Blankaart Water Production Center, a reservoir containing 3 million m3 of raw surface water acts as a first biologic treatment step before further processing to drinking water. Over the past decade, severe algal blooms have occurred in the reservoir, hampering the water production. Therefore, strategies (e.g., the injection of algaecide) have been looked at to prevent these from happening or try to control them. In this context, the HYperspectral Pointable System for Terrestrial and Aquatic Radiometry (HYPSTAR), installed since early 2021, helps in monitoring the effectiveness of these strategies. Indeed, the HYPSTAR provides, at a very high temporal resolution, bio-optical parameters related to the water quality, i.e., Chlorophyll-a (Chla) concentrations and suspended particulate matter (SPM). The present paper shows how the raw in situ hyperspectral data (a total of 8116 spectra recorded between 2021-02-03 and 2022-08-03, of which 2988 spectra passed the quality check) are processed to find the water-leaving reflectance and how SPM and Chla are derived from it. Based on a limited number of validation data, we also discuss the potential of retrieving phycocyanin (an accessory pigment unique to freshwater cyanobacteria). The results show the benefits of the high temporal resolution of the HYPSTAR to provide near real-time water quality indicators. The study confirms that, in conjunction with a few water sampling data used for validation, the HYPSTAR can be used as a quick and cost-effective method to detect and monitor phytoplankton blooms.
Article Reference Suitability of multisensory satellites for long-term chlorophyll assessment in coastal waters: A case study in optically-complex waters of the temperate region
We investigated the use of multisensory satellite data to determine long-term changes in surface chlorophyll concentrations using a 19-year (1998–2016) time series of chlorophyll data in the Danish Kattegat region of the Baltic Sea. Merged satellite estimates (SeaWiFS-MODIS/Aqua-MERIS-VIIRS) were compared with in situ ship based time series from four monitoring stations situated with increasing distance from land and nutrient sources. In situ and satellite derived estimates showed similar trend in chlorophyll with several fold higher values closer to land. Satellites aligned very well with in situ estimates in the open water stations but showed significant differences in magnitude and inter-annual variability, in particular in shallow coastal waters. Some systematic deviation was observed with satellite underestimating the growing season average for the earlier periods (1998–2002) and overestimating for the later period (2012–2016) compared to in situ estimates. Comparing growing season chlorophyll means over the 19 year period showed increasing magnitude and variability in nearshore and shallower areas, most pronounced for the satellite derived chlorophyll. Satellites overestimated chlorophyll in nearshore areas 2–4 fold, despite excluding shallow nearshore areas with possible benthic interferences from the analyses. This bias needs further validation and requires correction to improve the overall applicability of satellites for long-term monitoring of chlorophyll in the Kattegat region. From analysis of normalized data, we developed a simple correction model, which reduced deviations considerably between methods, underlying the importance of in situ data for application of satellite observations. While significant deviations were observed from in situ data, satellites are clearly advantageous in the much higher temporal and high spatial coverage they provide. Multisensory satellites can, however, not be used currently as a standalone technique for long-term assessment of chlorophyll. They require validation with in situ measurements, which provide essential data for calibration, validation and correction of satellite based estimates. A complementary use of multisensory satellite and in situ measurements therefore remains essential to assess trends in the ecological status of optically complex waters such as the Kattegat region of the Baltic Sea.
Article Reference Organic Matter Composition of Biomineral Flocs and Its Influence on Suspended Particulate Matter Dynamics Along a Nearshore to Offshore Transect
The seasonal variation in concentration of transparent exopolymer particles (TEPs), particulate organic carbon (POC) and particulate organic nitrogen (PON) were investigated together with floc size and the concentration of suspended particulate matter (SPM) along the cross-shore gradient, from the high turbid nearshore toward the low-turbid offshore waters in the Southern Bight of the North Sea. Our data demonstrate that biophysical flocculation cannot be explained by these heterogeneous parameters, but requires a distinction between a more reactive labile (“fresh”) and a less reactive refractory (“mineral-associated”) fraction. Based on all data, we separated the labile and mineral-associated POC, PON, and TEP using a semi-empirical model approach. The model's estimates of fresh and mineral-associated organic matter (OM) show that great parts of the POC, PON, and TEP are associated with suspended minerals, which are present in the water column throughout the year, whereas the occurrence of fresh TEP, POC, and PON is restricted to spring and summer months. In spite of a constantly high abundance of total TEP throughout the entire year, it is its fresh fraction that promotes the formation of larger and faster sinking biomineral flocs, thereby contributing to reducing the SPM concentration in the water column over spring and summer. Our results show that the different components of the SPM, such as minerals, extracellular OM and living organisms, form an integrated dynamic system with direct interactions and feedback controls.
Article Reference Biological site suitability for exposed self-regulating cultivation of blue mussel (Mytilus edulis): A Belgian case study
Semantic Scholar extracted view of "Biological site suitability for exposed self-regulating cultivation of blue mussel (Mytilus edulis): a Belgian case study" by B. Stechele et al.
Article Reference Comparing life history traits and tolerance to changing environments of two oyster species (Ostrea edulis and Crassostrea gigas) through Dynamic Energy Budget theory
To predict the response of the European flat oyster (Ostrea edulis) and Pacific cupped oyster (Crassostrea gigas/Magallana gigas) populations to environmental changes, it is key to understand their life history traits. The Dynamic Energy Budget (DEB) theory is a mechanistic framework that enables the quantification of the bioenergetics of development, growth and reproduction from fertilization to death across different life stages. This study estimates the DEB parameters for the European flat oyster, based on a comprehensive dataset, while DEB parameters for the Pacific cupped oyster were extracted from the literature. The DEB parameters for both species were validated using growth rates from laboratory experiments at several constant temperatures and food levels as well as with collected aquaculture data from the Limfjorden, Denmark, and the German Bight. DEB parameters and the Arrhenius temperature parameters were compared to get insight in the life history traits of both species. It is expected that increasing water temperatures due to climate change will be beneficial for both species. Lower assimilation rates and high energy allocation to soma explain O. edulis’ slow growth and low reproductive output. Crassostrea gigas’ high assimilation rate, low investment in soma and extremely low reserve mobility explains the species’ fast growth, high tolerance to starvation and high reproductive output. Hence, the reproductive strategies of both species are considerably different. Flat oysters are especially susceptible to unfavourable environmental conditions during the brooding period, while Pacific oysters’ large investment in reproduction make it well adapted to highly diverse environments. Based on the life history traits, aquaculture and restoration of O. edulis should be executed in environments with suitable and stable conditions.
Article Reference Global satellite water classification data products over oceanic, coastal, and inland waters
Satellites have generated extensive data of remote sensing reflectance spectra (Rrs(λ)) covering diverse water classes or types across global waters. Spectral classification of satellite Rrs(λ) data allows for the distinguishing and grouping of waters with characteristic bio-optical/biogeochemical features that may influence the productivity of a given water body. This study reports new satellite water class products (Level-2 and Level-3) from the Visible Infrared Imaging Radiometer Suite (VIIRS). We developed and implemented a hyperspectral scheme that accounts for the Rrs(λ) spectral shapes and globally resolves oceanic, coastal, and inland waters into 23 water classes. We characterized the light absorption and scattering coefficients, chlorophyll-a concentration, diffuse attenuation coefficient, and suspended particulate matter for individual water classes. It is shown that the water classes are separable by their distinct bio-optical and biogeochemical properties. Furthermore, validation result suggests that the VIIRS water class products are accurate globally. Finally, we examined the spatial and temporal variability of the water classes in case studies for a demonstration of applications. The water class data in open oceans reveal that the subtropical ocean gyres have experienced dramatic expansion over the last decade. In addition, the water class data appear to be a valuable (and qualitative) indicator for water quality in coastal and inland waters with compelling evidence. We stress that this new satellite product is an excellent addition to the aquatic science database, despite the need for continuous improvement toward perfection.
Article Reference Validation of Landsat 8 high resolution Sea Surface Temperature using surfers
Nearshore coastal waters are highly dynamic in both space and time. They can be difficult to sample using conventional methods due to their shallow depth, tidal variability, and the presence of strong currents and breaking waves. High resolution satellite sensors can be used to provide synoptic views of Surface Temperature (ST), but the performance of such ST products in the nearshore zone is poorly understood. Close to the shoreline, the ST pixels can be influenced by mixed composition of water and land, as a result of the sensor’s spatial resolution. This can cause thermal adjacency effects due to the highly different diurnal temperature cycles of water bodies and land. Previously, temperature data collected during surfing sessions has been proposed for validation of moderate resolution (1 km pixel size) satellite ST products. In this paper we use surfing temperature data to validate three high resolution (100 m resampled to 30 m pixel size) ST products derived from the Thermal InfraRed Sensor (TIRS) on board Landsat 8 (L8). ST was derived from Collection 1 and 2 Level 1 data (C1L1 and C2L1) using the Thermal Atmospheric Correction Tool (TACT), and was obtained from the standard Collection 2 Level 2 product (USGS C2L2). This study represents one of the first evaluations of the new C2 products, both L1 and L2, released by USGS at the end of 2020. Using automated matchup and image quality control, 88 matchups between L8/TIRS and surfers were identified, distributed across the North-Western semihemisphere. The unbiased Root Mean Squared Difference (uRMSD) between satellite and in situ measurements was generally ¡ 2 K, with warm biases (Mean Average Difference, MAD) of 1.7 K (USGS C2L2), 1.3 K (TACT C1L1) and 0.8 K (TACT C2L1). Large interquartile ranges of ST in 5 × 5 satellite pixels around the matchup location were found for several images, especially for the summer matchups around the Californian coast. By filtering on target stability the number of matchups reduced to 31, which halved the uRMSD across the three methods (to around 1.1K), MAD were much lower, i.e. 1.1 K (USGS C2L2), 0.6 K (TACT C1L1), and 0.2 K (TACT C2L1). The larger biases of the C2L2 product compared to TACT C2L1 are caused as a result of: (1) a lower emissivity value for water targets used in USGS C2L2, and (2) differences in atmospheric parameter retrieval, mainly from differences in upwelling atmospheric radiance and lower atmospheric transmittance retrieved by USGS C2L2. Additionally, tiling artefacts are present in the C2L2 product, which originate from a coarser atmospheric correction process. Overall, the L8/TIRS derived ST product compares well with in situ measurements made while surfing, and we found the best performing ST product for nearshore coastal waters to be the Collection 2 Level 1 data processed with TACT.
Article Reference On the Seasonal Dynamics of Phytoplankton Chlorophyll-a Concentration in Nearshore and Offshore Waters of Plymouth, in the English Channel: Enlisting the Help of a Surfer
The role of phytoplankton as ocean primary producers and their influence on global biogeochemical cycles makes them arguably the most important living organisms in the sea. Like plants on land, phytoplankton exhibit seasonal cycles that are controlled by physical, chemical, and biological processes. Nearshore coastal waters often contain the highest levels of phytoplankton biomass. Yet, owing to difficulties in sampling this dynamic region, less is known about the seasonality of phytoplankton in the nearshore (e.g., surf zone) compared to offshore coastal, shelf and open ocean waters. Here, we analyse an annual dataset of chlorophyll-a concentration—a proxy of phytoplankton biomass—and sea surface temperature (SST) collected by a surfer at Bovisand Beach in Plymouth, UK on a near weekly basis between September 2017 and September 2018. By comparing this dataset with a complementary in-situ dataset collected 7 km offshore from the coastline (11 km from Bovisand Beach) at Station L4 of the Western Channel Observatory, and guided by satellite observations of light availability, we investigated differences in phytoplankton seasonal cycles between nearshore and offshore coastal waters. Whereas similarities in phytoplankton biomass were observed in autumn, winter and spring, we observed significant differences between sites during the summer months of July and August. Offshore (Station L4) chlorophyll-a concentrations dropped dramatically, whereas chlorophyll-a concentrations in the nearshore (Bovsiand Beach) remained high. We found chlorophyll-a in the nearshore to be significantly positively correlated with SST and PAR over the seasonal cycle, but no significant correlations were observed at the offshore location. However, offshore correlation coefficients were found to be more consistent with those observed in the nearshore when summer data (June–August 2018) were removed. Analysis of physical (temperature and density) and chemical variables (nutrients) suggest that the offshore site (Station L4) becomes stratified and nutrient limited at the surface during the summer, in contrast to the nearshore. However, we acknowledge that additional experiments are needed to verify this hypothesis. Considering predicted changes in ocean stratification, our findings may help understand how the spatial distribution of phytoplankton phenology within temperate coastal seas could be impacted by climate change. Additionally, this study emphasises the potential for using marine citizen science as a platform for acquiring environmental data in otherwise challenging regions of the ocean, for understanding ecological indicators such as phytoplankton abundance and phenology. We discuss the limitations of our study and future work needed to explore nearshore phytoplankton dynamics.
Article Reference The HYPERMAQ dataset: bio-optical properties of moderately to extremely turbid waters
Because of the large diversity of case 2 waters ranging from extremely absorbing to extremely scattering waters and the complexity of light transfer due to external terrestrial inputs, retrieving main biogeochemical parameters such as chlorophyll-a or suspended particulate matter concentration in these waters is still challenging. By providing optical and biogeochemical parameters for 180 sampling stations with turbidity and chlorophyll-a concentration ranging from 1 to 700 FNU and from 0.9 to 180 mg m−3 respectively, the HYPERMAQ dataset will contribute to a better description of marine optics in optically complex water bodies and can help the scientific community to develop algorithms. The HYPERMAQ dataset provides biogeochemical parameters (i.e. turbidity, pigment and chlorophyll-a concentration, suspended particulate matter), apparent optical properties (i.e. water reflectance from above water measurements) and inherent optical properties (i.e. absorption and attenuation coefficients) from six different study areas. These study areas include large estuaries (i.e. the Rio de la Plata in Argentina, the Yangtze estuary in China, and the Gironde estuary in France), inland (i.e. the Spuikom in Belgium and Chascomùs lake in Argentina), and coastal waters (Belgium). The dataset is available from Lavigne et al. (2022) at https://doi.org/10.1594/PANGAEA.944313.
Article Reference Threshold indicators of primary production in the north-east Atlantic for assessing environmental disturbances using 21 years of satellite ocean colour
Primary production (PP) is highly sensitive to changes in the ecosystem and can be used as an early warning indicator for disturbance in the marine environment. Historic indicators of good environmental status of the north-east (NE) Atlantic and north-west (NW) European Seas suggested that daily PP should not exceed 2–3 g C m−2 d−1 during phytoplankton blooms and that annual rates should be 300 g C m−2 yr−1. We use 21 years of Copernicus Marine Service (CMEMS) Ocean Colour data from September 1997 to December 2018 to assess areas in the NE Atlantic with similar peak, climatology, phenology and annual PP values. Daily and annual thresholds of the 90th percentile (P90) of PP are defined for these areas and PP values above these thresholds indicate disturbances, both natural and anthropogenic, in the marine environment. Two case studies are used to test the validity and accuracy of these thresholds. The first is the eruption of the volcano Eyjafjallajökull, which deposited large volumes of volcanic dust (and therefore iron) into the NE Atlantic during April and May 2010. A clear signature in both PP and chlorophyll-a (Chl a) was evident from 28th April to 6th May and from 18th to 27th May 2010, when PP exceeded the PP P90 threshold for the region, which was comparatively more sensitive than Chl a P90 as an indicator of this disturbance. The second case study was for the riverine input of total nitrogen and phosphorus, along the Wadden Sea coast in the North Sea. During years when total nitrogen and phosphorus were above the climatology maximum, there was a lag signature in both PP and Chl a when PP exceeded the PP P90 threshold defined for the study area which was slightly more sensitive than Chl a P90. This technique represents an accurate means of determining disturbances in the environment both in the coastal and offshore waters in the NE Atlantic using remotely sensed ocean colour data.
Article Reference Oil extraction imperils Africa's Great Lakes
Article Reference Partecosta milesi sp. nov., a new cryptic species of Terebridae from the SW Indian Ocean, with a revision of South African Gradaterebra species
Partecosta milesi sp. nov. is described as new and compared to its sole morphological congener in the SW Indian Ocean. The South African members of the genus Gradaterebra are revised of which knowledge of the shell morphology remains only peripheral.
Article Reference Terebra cloveri sp. nov., a new species of Terebridae from the W Philippine Sea
Terebra cloveri sp. nov. is described from the southeastern South China Sea (West Philippines Sea - Philippines) and compared with its congeners with which it has historically been mistaken.
Article Reference Hastula strigilata revisited: Part III. Description of two new species from Australia and the Hawaiian Islands (Gastropoda: Conoidea: Terebridae)
Two morphospecies that remained undescribed in a previous study are described as new from Australia and the Hawaiian Islands, respectively and facilitated by the availability of recently acquired additional material.
Article Reference Microrestes gen. nov., a new genus in the Oriental stick insect tribe Datamini Rehn & Rehn, 1939 with a new species and a new combination (Phasmida: Heteropterygidae: Dataminae)
Article Reference Lasioglossum dorchini (Hymenoptera: Apoidea: Halictidae) a new species of bee from Israel
This paper describes a new species, Lasioglossum dorchini, occuring in sand dunes in Israel. It is close to Lasioglossum leptocephalum. Its phylogenetic relationships with the other species of the virens/littorale group are analyzed
Article Reference Plantes médicinales et régime alimentaire : les nonnes de Clairefontaine au XVIIIe siècle
Article Reference L’exploitation des ressources animales et végétales à la frontière de la Germanie inférieure et de la Gaule Belgique.
Article Reference Approche des pratiques agricoles durant le haut Moyen Âge en Hesbaye : étude de l’habitat rural de Lohincou/Villers-le-Bouillet (Province de Liège, Belgique)
Incollection Reference Genetic traces of environmental variations in ancient lakes
 Help


 
reference(s)

 
 
add or import
2023
add or import
2023 PDFs directly available
add or import
2022
add or import
2022 PDFs directly available
add or import
2021
add or import
2021 PDFs directly available
add or import
2020
add or import
2019
add or import
2018
add or import
2017
add or import
2016
add or import
before 2016
add or import
before RBINS
add or import
after RBINS
   


   
 
PDF One Drive Repository
 
Add in the year folder