Search publications of the members of the Royal Belgian institute of natural Sciences
-
NATUURSTEEN in het STADHUIS van KLUNDERT
-
GEN-EX – Metagenomics of Extreme-Wave Events
- Extreme-wave events (tsunamis, storm surge and waves) pose significant hazards to coastal communities worldwide. Onshore deposits from these events significantly enhance our understanding of their long-term frequency-magnitude patterns, which are usually not covered by historical and instrumental documentation. Such perspectives are crucial for successful coastal hazard assessments and consequential efforts to mitigate against the loss of life and assets. Methods enabling reliable and consistent differentiation between the sedimentary evidence for tsunamis and storms remain elusive as deposits from both processes share a number of sedimentary criteria. Microfossil approaches (foraminifera, ostracods, diatoms) have yielded promising progress towards conclusive identification (PILARCZYK et al., 2014), however dissolution and bacterial degradation of carbonate tests often prevent microfossil identification. To address this issue in a pioneering project kicked-off in late 2017, we aim at using high-throughput, metagenomic sequencing techniques to identify marine organisms in onshore sand layers from their DNA remains and to unravel cryptic diversities. We focus on foraminifera, single-celled protists, which show depth-related zonation in subtidal environments and have already been traced successfully in palaeo-tsunami deposits by their ancient DNA (SZCZUCIŃSKI et al., 2016), and compare classic and molecular methods for their identification. Three objectives will be followed to reach this goal: 1. Quantify the relationship between water depth and the distribution of different species of foraminifera using both classic assemblage methods and metagenomic approaches. 2. Assess the potential for identifying key indicator species in extreme-wave deposits in different climate settings based on both assemblage approaches and metagenomic high-throughput sequencing techniques; 3. Establish how metagenomic approaches contribute to consistent and reliable differentiation between the sedimentary evidence for storms and tsunamis in coastal settings. The three key field areas, which share an abundance of published, well-dated evidence for both storms and tsunamis, comprise the Shetland Islands, south central Japan, and southern Chile. The Shetland Islands have a temperate oceanic climate, and near-shore lakes and coastal peat lowlands feature sand sheets deposited by the submarine Storegga landslide around 8 ka years ago and a younger tsunami dated to 1.5 ka (e.g. BONDEVIK et al., 2005). Extreme-wave deposits from south central Japan, underlying a subtropical climate, are available through the ongoing BELSPO BRAIN-be-funded QuakeRecNankai project, focusing on records of past earthquakes and tsunamis along the Nankai Trough (GARRETT et al., 2016). At temperate-humid Chaihuin, southern Chile, deposits of the 1960 Chile tsunami and several older events have been documented (HOCKING & GARRETT, 2016) and sampled for identification of foraminiferal assemblages based on DNA remains. REFERENCES BONDEVIK, S., MANGERUD, J., DAWSON, S., DAWSON, A. & LOHNE, Ø. 2005. Evidence for three North Sea tsunamis at the Shetland Islands between 8000 and 1500 years ago. — Quaternary Science Reviews, 24: 1757–1775. GARRETT, E., FUJIWARA, O., GARRETT, P., HEYVAERT, V.M.A., SHISHIKURA, M., YOKOYAMA, Y., HUBERT-FERRARI, A., BRÜCKNER, H., NAKAMURA, A., DE BATIST, M. & THE QUAKERECNANKAI TEAM. 2016. A systematic review of geological evidence for Holocene earthquakes and tsunamis along the Nankai-Suruga Trough, Japan. — Earth-Science Reviews, 159: 337–357. HOCKING, E. & GARRETT, E. 2016. Geological records of recent and historical ruptures of the Chilean subduction zone: a latitudinal transect of earthquake deformation and tsunami inundation. — Geophysical Research Abstracts, 18: EGU2016-938. PILARCZYK, J.E., DURA, T., HORTON, B.P., ENGELHART, S.E., KEMP, A.C. & SAWAI, Y. 2016. Microfossils from coastal environments as indicators of paleo-earthquakes, tsunamis and storms. — Palaeogeography, Palaeoclimatology, Palaeoecology, 413: 144–157. SZCZUCIŃSKI, W., PAWŁOWSKA, J., LEJZEROWICZ, F., NISHIMURA, Y., KOKOCIŃSKI, M., MAJEWSKI, W., NAKAMURA, Y. & PAWLOWSKI, J. 2016. Ancient sedimentary DNA reveals past tsunami deposits. — Marine Geology, 381: 29–33.
-
Un Malachide nouveau pour la faune de Belgique, Hypebaeus albifrons (Fabricius, 1775) (Coleoptera, Melyridae, Malachiinae)
-
Micropalaeontological dating of the Prémontré mammal fauna (MP10, Prémontré Sands, EECO, early late Ypresian, Paris Basin)
- At their type locality the Prémontré Sands contain fairly well-diversified organic-walled microfossil assemblages attributable to the lower part of dinoflagellate cyst Zone D9 and indicating a transition from an estuarine to a lagoonal depositional regime, up-section as well as laterally. Identical assemblages have been recorded in the inner to mid-neritic Merelbeke Clay Member in Belgium, allowing the Prémontré Sands to be positioned within lower NP13 and early Chron C22r. The deposition of the MP10 Prémontré mammal fauna is estimated to postdate the onset of both NP13 and Chron C22r, which are nearly coincident, by about 200 to 300 kyr. The biostratigraphic dating refers this deposit to the early late Ypresian and to the final phase of the Early Eocene Climatic Optimum (EECO) at about 50.4 to 50.3 million years ago. The Prémontré Sands, as well as their distal equivalent the Merelbeke Clay Member, were deposited following a major sea-level rise, the highest of the late Ypresian in the southern North Sea Basin s.l. (including the Paris Basin). They are separated from the overlying “Glauconie grossière” (zone NP14; middle part of zone D9) by a hiatus of approximately 2.5 myr.
-
MaRVEN- Environmental Impacts of Noise, Vibrations and Electromagnetic Emission from Marine Renewable Energy
- The construction and operation of marine renewable energy developments (MREDs) will lead to, among other things, the emission of electromagnetic fields (EMF), underwater sound, and vibrations into the marine environment. Knowledge on these pressures and associated effects has been increasing over the past decade. Yet, many open questions with regard to the potential for MRED to impact on marine life remain. These information gaps pose challenges to the planning and deployment of MREDs. To address this, the European Union (EU) Commission, Directorate-General for Research and Innovation commissioned a study of the environmental effects of noise, vibrations and electromagnetic emissions from MREDs (Marine Renewable Energy, Vibration, Electromagnetic fields and Noise - MaRVEN). MaRVEN provides a review of the available literature related to environmental impacts of marine renewable energy devices and an in-depth analysis of studies on the environmental effects of noise, vibrations and electromagnetic emissions during installation and operation of wind, wave and tidal energy devices. The current norms and standards related to noise, vibrations and EMF were reviewed. On-site measurements and field experiments to fill priority knowledge gaps and to validate and build on the results obtained in reviews were undertaken. Finally, we outline a programme for further research and development with justified priorities.
-
Revision of ‘Balaena’ belgica reveals a new right whale species, the possible ancestry of the northern right whale, Eubalaena glacialis, and the ages of divergence for the living right whale species
-
The Relation between Migratory Activity of Pipistrellus Bats at Sea and Weather Conditions Offers Possibilities to Reduce Offshore Wind Farm Effects
- Bats undertaking seasonal migration between summer roosts and wintering areas can cross large areas of open sea. Given the known impact of onshore wind turbines on bats, concerns were raised on whether offshore wind farms pose risks to bats. Better comprehension of the phenology and weather conditions of offshore bat migration are considered as research priorities for bat conservation and provide a scientific basis for mitigating the impact of offshore wind turbines on bats. This study investigated the weather conditions linked to the migratory activity of Pipistrellus bats at multiple near- and offshore locations in the Belgian part of the North Sea. We found a positive relationship between migratory activity and ambient temperature and atmospheric pressure and a negative relationship with wind speed. The activity was highest with a wind direction between NE and SE, which may favor offshore migration towards the UK. Further, we found a clear negative relationship between the number of detections and the distance from the coast. At the nearshore survey location, the number of detections was up to 24 times higher compared to the offshore locations. Our results can support mitigation strategies to reduce offshore wind farm effects on bats and offer guidance in the siting process of new offshore wind farms.
-
Late Roman cremation burials (270-450 AD) in the civitas Tungrorum (Germania Secunda): between continuities and new contributions
-
[···]
-
Analysis of ancient DNA of a Medieval chess piece. Journées d'archéologie en Wallonie
- Nous présentons les résultats de l'analyse de l'ADN ancien provenant d'un pion d'échecs en ivoire découvert dans une occupation médiévale lors de fouilles archéologiques au pied de l'Enjambée, à Jambes (Namur). Le léger endommagement de la pièce lors des fouilles nous a permis de prélever quelques fragments d'ivoire ne pouvant pas être recollés lors de la restauration. Les analyses ADN nous ont permis de vérifier qu'il s'agit bien d'ivoire d'éléphant et plus précisément, d'un éléphant provenant vraisemblablement de l'est ou du sud de l'Afrique. Nous reconstituons également le trajet le plus probable de l'ivoire en territoire africain.
-
Le site funéraire de Lexhy (Grâce-Hollogne, province de Liège) avec un probable tumulus arasé du début du IIe s. apr. J.-C
-
Earth science collections of the Centre Grégoire Fournier (Maredsous) with comments on Middle Devonian–Carboniferous brachiopods and trilobites from southern Belgium
-
Carte géologique de Wallonie 1/25.000e Huy-Nandrin - n° 48/3-4
-
An Exceptional Lower Carboniferous Historical Heritage Stone from Belgium, the ‘Pierre de Meuse’
-
New linguliformean brachiopods from the lower Tremadocian (Ordovician) of the Brabant Massif, Belgium, with comments on contemporaneous faunas from the Stavelot–Venn Massif.
-
Brachiopods from the historical type area of the Viséan Stage (Carboniferous, Mississippian; Belgium) and the Visé fauna: preliminary remarks
-
Lower Famennian (Upper Devonian) rhynchonellide and athyride brachiopods from the South Armenian Block
-
Global Carboniferous brachiopod biostratigraphy
-
Tremadocian and Floian (Ordovician) linguliformean brachiopods from the Stavelot–Venn Massif (Avalonia; Belgium and Germany)
-
Aramazdospirifer orbelianus (Abich, 1858) n. comb., a new cyrtospiriferid brachiopod genus and a biostratigraphically important species from the lower Famennian (Upper Devonian) of Armenia.


