Skip to content. | Skip to navigation

Personal tools

You are here: Home / Library / RBINS Staff Publications / Multi-scale Mineralogical Characterization of the Mediterranean Hypercalcified Sponge Petrobiona massiliana (Porifera, Calcarea, Calcaronea)

GILIS M., GRAUBY O., WILLENZ Ph., DUBOIS Ph., LEGRAS L., HERESANU V. and BARONNET A. (2011)

Multi-scale Mineralogical Characterization of the Mediterranean Hypercalcified Sponge Petrobiona massiliana (Porifera, Calcarea, Calcaronea)

Journal of Structural Biology, 176:315-329.

The massive basal skeleton of a few remnant living hypercalcified sponges rediscovered since the 1960s are valuable representatives of ancient calcium carbonate biomineralization mechanisms in basal Metazoa. A multi-scale mineralogical characterization of the easily accessible Mediterranean living hypercalcified sponge belonging to Calcarea, Petrobiona massiliana (Vacelet and Lévi, 1958), was conducted. Oriented observations in light and electron microscopy of mature and growing areas of the Mg-calcite basal skeleton were combined in order to describe all structural levels from the submicronic to the macroscopic scale. The smallest units produced are ca. 50–100 nm grains that are in a mushy amorphous state before their crystallization. Selected area electron diffraction (SAED) further demonstrated that submicronic grains are assembled into crystallographically coherent clusters or fibers, the latter are even laterally associated into single-crystal bundles. A model of crystallization propagation through amorphous submicronic granular units is proposed to explain the formation of coherent micron-scale structural units. Finally, XRD and EELS analyses highlighted, respectively, inter-individual variation of skeletal Mg contents and heterogeneous spatial distribution of Ca ions in skeletal fibers. All mineralogical features presented here cannot be explained by classical inorganic crystallization principles in super-saturated solutions, but rather underlined a highly biologically regulated formation of the basal skeleton. This study extending recent observations on corals, mollusk and echinoderms confirms that occurrence of submicronic granular units and a possible transient amorphous precursor phase in calcium carbonate skeletons is a common biomineralization strategy already selected by basal metazoans.
Animals, Research

Document Actions

Menu

 
RBINS Staff
add or import reference(s)
  • add a PDF paper
    (Please follow editors copyrights policies)
  • add a PDF poster