Skip to content. | Skip to navigation

Personal tools

You are here: Home
3073 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Using Hyperspectral Remote Sensing to Monitor Water Quality in Drinking Water Reservoirs
At the Blankaart Water Production Center, a reservoir containing 3 million m3 of raw surface water acts as a first biologic treatment step before further processing to drinking water. Over the past decade, severe algal blooms have occurred in the reservoir, hampering the water production. Therefore, strategies (e.g., the injection of algaecide) have been looked at to prevent these from happening or try to control them. In this context, the HYperspectral Pointable System for Terrestrial and Aquatic Radiometry (HYPSTAR), installed since early 2021, helps in monitoring the effectiveness of these strategies. Indeed, the HYPSTAR provides, at a very high temporal resolution, bio-optical parameters related to the water quality, i.e., Chlorophyll-a (Chla) concentrations and suspended particulate matter (SPM). The present paper shows how the raw in situ hyperspectral data (a total of 8116 spectra recorded between 2021-02-03 and 2022-08-03, of which 2988 spectra passed the quality check) are processed to find the water-leaving reflectance and how SPM and Chla are derived from it. Based on a limited number of validation data, we also discuss the potential of retrieving phycocyanin (an accessory pigment unique to freshwater cyanobacteria). The results show the benefits of the high temporal resolution of the HYPSTAR to provide near real-time water quality indicators. The study confirms that, in conjunction with a few water sampling data used for validation, the HYPSTAR can be used as a quick and cost-effective method to detect and monitor phytoplankton blooms.
Located in Library / RBINS Staff Publications 2022
Article Reference Monitoring of high biomass Phaeocystis globosa blooms in the Southern North Sea by in situ and future spaceborne hyperspectral radiometry
Phaeocystis globosa (P. globosa hereafter) is a phytoplankton species which commonly blooms at high biomass in April–May in the Southern North Sea and forms undesirable foam which accumulates on the beaches. Monitoring of this species is required by EU directives. Measurement of phytoplankton species composition has historically been made by pigment or microscopic analysis of water samples, which is spatially sparse and temporally infrequent e.g. weekly/monthly. In-water instruments such as flow cytometers can provide very high frequency data but at high acquisition and maintenance cost. Automated in situ above water radiometry has the potential to provide very high frequency data at single locations but requires very careful design of processing algorithms in turbid waters with high non-algal absorption. Spaceborne radiometry could provide both very good spatial coverage and moderate/high frequency of data, e.g. daily/weekly, but accurate determination of phytoplankton species composition is considerably more difficult in turbid waters than in open ocean waters. Prior studies based on a limited number of shipborne reflectance measurements suggested feasibility of P. globosa detection in turbid waters from hyperspectral radiometry. The availability of a new autonomous above water hyperspectral radiometer system has enabled further refinement and intensive testing of these techniques. From a time-series of 4356 water reflectance spectra measured near Ostend harbour in Belgian coastal waters from 2020/04/01 to 2020/08/18, two existing algorithms for P. globosa detection were successfully applied. Results show a high biomass P. globosa bloom occurring in late-April/early-May as found every year in water sample analyses for Belgian coastal waters. The high temporal resolution of the radiometric data allows to capture the evolution of the bloom at time scales sufficiently short (hourly and daily) compared to growth/decay and tidal processes. The challenges of extending the methods to future spaceborne instruments are also tested by simulating the impact of errors in sensor inter-band calibration, atmospheric correction and radiometric noise. Results show that because of their spectral coherence, atmospheric correction errors impact only slightly P. globosa detection whereas inaccuracy in inter-band calibration and radiometric noise are much more problematic as they affect each spectral band independently. Because radiometric noise should be reduced in the new generation of hyperspectral sensors and can always be reduced by spatial binning, the inter-band relative calibration uncertainty appears to be the main challenge for spaceborne mission design. Indeed, it was demonstrated that inter-band calibration error should be 0.25\% and ideally 0.1\% at top of the atmosphere highlighting the need for particular attention to inter-band calibration in sensor design and post processing treatments including vicarious calibration.
Located in Library / RBINS Staff Publications 2022
Article Reference Quality-control tests for OC4, OC5 and NIR-red satellite chlorophyll-a algorithms applied to coastal waters
Reliable satellite estimates of chlorophyll-a concentration (Chl-a) are needed in coastal waters for applications such as eutrophication monitoring. However, because of the optical complexity of coastal waters, retrieving accurate Chl-a is still challenging. Many algorithms exist and give quite different performance for different optical conditions but there is no clear definition of the limits of applicability of each algorithm and no clear basis for deciding which algorithm to apply to any given image pixel (reflectance spectrum). Poor quality satellite Chl-a data can easily reach end-users. To remedy this and provide a clear decision on when a specific Chl-a algorithm can be used, we propose simple quality control tests, based on MERIS water leaving reflectance (ρw) bands, to determine on a pixel-by-pixel basis if any of three popular and complementary algorithms can be used. The algorithms being tested are: 1. the OC4 blue-green band ratio algorithm which was designed for open ocean waters; 2. the OC5 algorithm which is based on look-up tables and corrects OC4 overestimation in moderately turbid waters and 3. a near infrared-red (NIR-red) band ratio algorithm designed for eutrophic waters. Using a dataset of 348 in situ Chl-a / MERIS matchups, the conditions for reliable performance of each of the selected algorithms are determined. The approach proposed here looks for the best compromise between the minimization of the relative difference between In situ measurements and satellite estimations and the number of pixels processed. Conditions for a reliable application of OC4 and OC5 depend on ρw412/ρw443 and ρw560, used as proxies of coloured dissolved organic matter and suspended particulate matter (SPM), as compared to ρw560/ρw490, used as a proxy for Chl-a. Conditions for reliable application of the NIR-red band ratio algorithm depend on Chl-a and SPM. These conditions are translated into pixel-based quality control (QC) tests with appropriately chosen thresholds. Results show that by removing data which do not pass QC, the performance of the three selected algorithms is significantly improved. After combining these algorithms, 70\% of the dataset could be processed with a median absolute percent difference of 30.5\%. The QC tests and algorithm merging methodology were then tested on four MERIS images of European waters. The OC5 algorithm was found to be suitable for most pixels, except in very turbid and eutrophic waters along the coasts where the NIR-red band ratio algorithm helps to fill the gap. Finally, a test was performed on an OLCI-S3A image. Although some validations of water reflectance are still needed for the OLCI sensors, results show similar behavior to the MERIS applications which suggests that when applied to OLCI data the present methodology will help to accurately estimate Chl-a in coastal waters for the next decade.
Located in Library / RBINS Staff Publications 2022
Article Reference Tremadocian and Floian (Ordovician) linguliformean brachiopods from the Stavelot–Venn Massif (Avalonia; Belgium and Germany)
Located in Library / RBINS Staff Publications 2022
Article Reference Grey wolf genomic history reveals a dual ancestry of dogs
The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived1,2,3,4,5,6,7,8. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000–30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located.
Located in Library / RBINS Staff Publications 2022
Article Reference One to host them all: genomics of the diverse bacterial endosymbionts of the spider Oedothorax gibbosus
Bacterial endosymbionts of the groups Wolbachia , Cardinium and Rickettsiaceae are well known for their diverse effects on their arthropod hosts, ranging from mutualistic relationships to reproductive phenotypes. Here, we analysed a unique system in which the dwarf spider Oedothorax gibbosus is co-infected with up to five different endosymbionts affiliated with Wolbachia , ‘Candidatus Tisiphia’ (formerly Torix group Rickettsia ), Cardinium and Rhabdochlamydia . Using short-read genome sequencing data, we show that the endosymbionts are heterogeneously distributed among O. gibbosus populations and are frequently found co-infecting spider individuals. To study this intricate host–endosymbiont system on a genome-resolved level, we used long-read sequencing to reconstruct closed genomes of the Wolbachia , ‘Ca. Tisiphia’ and Cardinium endosymbionts. We provide insights into the ecology and evolution of the endosymbionts and shed light on the interactions with their spider host. We detected high quantities of transposable elements in all endosymbiont genomes and provide evidence that ancestors of the Cardinium , ‘Ca. Tisiphia’ and Wolbachia endosymbionts have co-infected the same hosts in the past. Our findings contribute to broadening our knowledge about endosymbionts infecting one of the largest animal phyla on Earth and show the usefulness of transposable elements as an evolutionary ‘contact-tracing’ tool.
Located in Library / RBINS Staff Publications 2023
Article Reference Challenges and a call to action for protecting European red wood ants
Red wood ants (RWAs) are a group of keystone species widespread in temperate and boreal forests of the Northern Hemisphere. Despite this, there is increasing evidence of local declines and extinctions. We reviewed the current protection status of RWAs throughout Europe and their International Union for the Conservation of Nature (IUCN) threat classification. Only some RWA species have been assessed at a global scale, and not all national red lists of the countries where RWAs are present include these species. Different assessment criteria, inventory approaches, and risk categories are used in different countries, and data deficiency is frequent. Legislative protection is even more complex, with some countries protecting RWAs implicitly together with the wildlife fauna and others explicitly protecting the whole group or particular species. This complexity often occurs within countries, for example, in Italy, where, outside of the Alps, only the introduced species are protected, whereas the native species, which are in decline, are not. Therefore, an international, coordinated framework is needed for the protection of RWAs. This first requires that the conservation target should be defined. Due to the similar morphology, complex taxonomy, and frequent hybridization, protecting the entire RWA group seems a more efficient strategy than protecting single species, although with a distinction between autochthonous and introduced species. Second, an update of the current distribution of RWA species is needed throughout Europe. Third, a protection law cannot be effective without the collaboration of forest managers, whose activity influences RWA habitat. Finally, RWA mounds offer a peculiar microhabitat, hosting a multitude of taxa, some of which are obligate myrmecophilous species on the IUCN Red List. Therefore, RWAs’ role as umbrella species could facilitate their protection if they are considered not only as target species but also as providers of species-rich microhabitats.
Located in Library / RBINS Staff Publications 2022
Article Reference Octet Stream Is vertebral shape variability in caecilians (Amphibia: Gymnophiona) constrained by forces experienced during burrowing?
Caecilians are predominantly burrowing, elongate, limbless amphibians that have been relatively poorly studied. Although it has been suggested that the sturdy and compact skulls of caecilians are an adaptation to their head-first burrowing habits, no clear relationship between skull shape and burrowing performance appears to exist. However, the external forces encountered during burrowing are transmitted by the skull to the vertebral column, and, as such, may impact vertebral shape. Additionally, the muscles that generate the burrowing forces attach onto the vertebral column and consequently may impact vertebral shape that way as well. Here, we explored the relationships between vertebral shape and maximal in vivo push forces in 13 species of caecilian amphibians. Our results show that the shape of the two most anterior vertebrae, as well as the shape of the vertebrae at 90% of the total body length, is not correlated with peak push forces. Conversely, the shape of the third vertebrae, and the vertebrae at 20% and 60% of the total body length, does show a relationship to push forces measured in vivo. Whether these relationships are indirect (external forces constraining shape variation) or direct (muscle forces constraining shape variation) remains unclear and will require quantitative studies of the axial musculature. Importantly, our data suggest that mid-body vertebrae may potentially be used as proxies to infer burrowing capacity in fossil representatives.
Located in Library / RBINS Staff Publications 2022
Article Reference On a small collection of sea cucumbers from the Mediterranean continental slope with the first record and re-description of Pseudothyone serrifera (Oestergren, 1898) (Holothuroidea: Dendrochirotida), a new species for the Mediterranean Sea
Located in Library / RBINS Staff Publications 2022 OA
Article Reference Pterosaur melanosomes support signalling functions for early feathers
Located in Library / RBINS Staff Publications 2022