-
Lithostratigraphic identification sheet Veldhoven Formation
-
Located in
Library
/
RBINS Staff Publications 2022
-
Checklist of ant (Hymenoptera: Formicidae) species from Nyungwe tropical rain forest, South-Western Rwanda
-
Tropical rain forests are inhabited by a wide range of plant and animal diversity. However, little is known about the diversity of ant (Hymenoptera: Formicidae) species in these areas. To fill the gap, a study has been conducted in seven sites inside Nyungwe National Park, a tropical rain forest located in South-Western Rwanda. Data have been collected in October 2021 through a quick sampling using pitfall traps, arboreal traps, baiting, Winklers, and hand searching of nests in leaf litter, soil, rotten and fallen wood, and under stones. Collected ant specimens have been identified to subfamily, genus and species levels by using the identification keys. Names of species have been confirmed after comparing the findings with the specimens housed at the Royal Belgian Institute of Natural Science (Brussels, Belgium) and at Kiko Gomez’s personal collection (Barcelona, Spain). A total of 7 subfamilies, 28 genera and 74 species were sampled. The subfamily Myrmicicnae had more genera and species compared with other subfamilies. Further, 9 genera and 43 species were collected in Rwanda for the first time, while 13 species were potentially undescribed ant species. High number of species has been sampled in the sites located in secondary forest at Karamba (53 species) and Pindura (33 species). We recommend intensive sampling in other locations of Nyungwe tropical rainforest and in the rest of Rwanda mountain tropical rain forests to get a clear view on the diversity of ant species in Rwanda.
Located in
Library
/
RBINS Staff Publications 2022
-
Variation in space and time of ant distribution among ground layers in an ecuadorian premontane forest
-
Nearly half of the ant species present in a tropical forest are directly in contact with the ground for nesting or foraging, with evidence of vertical stratification among ground layers (i.e., surface, litter, and soil). How ants in each layer respond to environmental factors and to seasonality remains little studied. We hypothesized that ant species distribution varied spatially and seasonally among the three ground layers and that their distribution was distinctly affected by various abiotic and biotic factors. The ant distribution was analysed spatio-temporally: vertically (between the ground surface, leaf-litter, and mineral soil, using pitfalls, Winkler, and soil cores), horizontally (every meter along a 100 m transect) and seasonally (between the dry and the rainy seasons). Four environmental parameters were measured every meter along the transect: canopy openness, slope, leaf-litter volume and soil properties. Our results showed a clear vertical stratification, with distinct faunal composition in each layer and a strong seasonal effect. Stable distribution of several dominant species between seasons suggests a low nest relocation rate. During the dry season, higher ant richness and abundance were found in pitfall traps suggesting higher activity on the surface of the forest floor. Similarly, higher ant richness and abundance found in the soil during the dry season suggest the migration of drought-sensitive species downwards deeper into the soil. Species richness and dominant species distribution were related to distinct factors according to the layer considered; we found strong correlations between the quantity of leaf-litter and dominant ant species distribution and species richness in the leaf-litter layer, while no correlation was found with any factor in the soil layer. While soil properties influenced the ant distribution at the kilometer scale they had little influence at the meter scale.
Located in
Library
/
RBINS Staff Publications 2018
-
The Impact of the Honeybee Apis mellifera on the Organization of Pollination Networks Is Positively Related with Its Interactive Role throughout Its Geographic Range
-
Abstract: Studies at local spatial scales have shown that the generalist honeybee Apis mellifera L. can strongly affect the structural organization and properties of pollination networks. However, there is still little knowledge on how the connectivity of the honeybee within networks (i.e., interactive role) could affect pollination networks at a global scale. To fill this gap, we evaluated how the interactive role of A. mellifera could affect niche overlap, specialization, and robustness of pollination networks. We used 109 weighted pollination networks spread across about 94 degrees of latitude and 227 degrees of longitude. We developed a new standardized framework based on species removal to assess the impact of the honeybee on plant-pollinator networks. We found that when the honeybee was removed from the networks, plant species had less niche overlap (i.e., shared fewer interactions via their pollinators) and the networks became more specialized and more robust to species extinctions. Our findings indicate that A. mellifera’s effects on pollination networks vary geographically and could influence several ecological and evolutionary factors acting at local scales, including pollination services. We hope this contribution will stimulate new macroecological studies involving abundant and generalist species and their functional roles within ecological communities.
Located in
Library
/
RBINS Staff Publications 2022
-
ATLANTIC ANTS: a data set of ants in Atlantic Forests of South America
-
Abstract Ants, an ecologically successful and numerically dominant group of animals, play key ecological roles as soil engineers, predators, nutrient recyclers, and regulators of plant growth and reproduction in most terrestrial ecosystems. Further, ants are widely used as bioindicators of the ecological impact of land use. We gathered information of ant species in the Atlantic Forest of South America. The ATLANTIC ANTS data set, which is part of the ATLANTIC SERIES data papers, is a compilation of ant records from collections (18,713 records), unpublished data (29,651 records), and published sources (106,910 records; 1,059 references), including papers, theses, dissertations, and book chapters published from 1886 to 2020. In total, the data set contains 153,818 ant records from 7,636 study locations in the Atlantic Forest, representing 10 subfamilies, 99 genera, 1,114 ant species identified with updated taxonomic certainty, and 2,235 morphospecies codes. Our data set reflects the heterogeneity in ant records, which include ants sampled at the beginning of the taxonomic history of myrmecology (the 19th and 20th centuries) and more recent ant surveys designed to address specific questions in ecology and biology. The data set can be used by researchers to develop strategies to deal with different macroecological and region-wide questions, focusing on assemblages, species occurrences, and distribution patterns. Furthermore, the data can be used to assess the consequences of changes in land use in the Atlantic Forest on different ecological processes. No copyright restrictions apply to the use of this data set, but we request that authors cite this data paper when using these data in publications or teaching events.
Located in
Library
/
RBINS Staff Publications 2022
-
Reaching for new heights: canopy laser scanning in the Peruvian Amazon
-
Large trees are vital for the functioning of tropical forests. They house a wide range of organisms, making them true biodiversity hotspots and play a key role in forest biomass storage.The Life On Trees (LOT) project is a research program in which all eukaryotic organisms on individual trees are surveyed, including plants, fungi, animals and protists. One of the goals of the research program is to explore the link between the distribution of the occurring organisms and the tree architecture of those large trees. To accurately quantify the structure of such trees and investigate the interplay between the tree and its surroundings, terrestrial laser scanning is currently used as a state-of-the-art technology. Terrestrial laser scanning (TLS) generally uses a laser scanner to scan trees from multiple viewpoints from the ground. In dense tropical forests, the tree canopy often reaches a height of 50 m or more. Due to the large distance between the scanner and the tree crown, even the best laser scanners have difficulty getting a clear view of the top of the canopy. For those large, colossal trees, data is limited and suffers a lot of occlusion. Since all scans are taken from the ground, data on the upperpart of branches is nonexistent. To assess this limitation of TLS, we explore how much additional 3D information is gained from the tree structure by collecting 3D scans inside the tree crown. With the aid of professional climbers, we lifted a RIEGL vz-400 laser scanner into a Dussia tree in Rio Abiseo National park located in the Peruvian Amazon. The selected tree is quite spectacular, it reaches a height of 50 m and a width of 45 m, and is covered with vegetation including many orchids and epiphytes hosting a wide variety of life forms. The first results of this project will be presented, focusing on the tree architecture with its impressive volume and branch length, and the benefits and challenges of scanning inside the tree crown.
Located in
Library
/
RBINS Staff Publications 2022
-
Biodiversity of eukaryotes in large tropical trees: the Life On Trees (LOT) program
-
Introduction: Basic data on biodiversity, such as the variety of life forms coexisting on a single tree, are still lacking and prevent a full understanding of the complexity of interactions among organisms in a tropical rainforest. Filling this gap has recently become more achievable thanks to advances in canopy access methods and genetic tools. Objective: The main aims of the research program Life On Trees (LOT) are to generate baseline knowledge about the number of species a single tropical tree can support and to understand how these communities of organisms are assembled. Methods: Our first project is performed in one of the most biologically diverse regions: the Peruvian Amazon, in the Rio Abiseo National Park. We focus our sampling on a spectacular Dussia tree (Fabaceae), which is 50 m high and 45 m wide and covered with epiphytes. For safety reasons, the sampling is carried out by professional climbers, guided by experts of the different eukaryotic groups studied (plants, fungi, animals, protists). In order to better understand the contribution of different tree components (bark, leaves, fruits, flowers, dead wood) to overall tree biodiversity, we assign observations into communities based on height zone or microhabitat and examine similarities and nestedness in the composition of these communities. The complex architecture of the tree is studied using terrestrial LiDAR and the location of samples is recorded using a high precision differential GPS receiver (dGNSS). The collected specimens will be determined by classical taxonomy and genetic methods (DNA metabarcoding). An online tracking system for those specimens sent to taxonomists for identification, as well as a central database system, are already under development. Results: The first results of the LOT-Peru project from April-May 2022 and of the preliminary tests conducted in October 2021 will be presented. Implications: The scope of this program is not only scientific. Using the simple example of a large tree, we can reach out to the public and explain difficult concepts, such as what biodiversity is and how it is generated and sustained. In addition, the tree is a strong symbol that has an emotional impact. We hope that this program will build awareness about the impacts of deforestation, and conversely the value of conservation, by showing foresters, city dwellers or villagers that when a tree is cut down, a whole range of biodiversity disappears.
Located in
Library
/
RBINS Staff Publications 2022
-
Pierres à aiguiser de l'habitat rural médiéval au "Grand Fauvage" (Marche-en-Famenne, Province du Luxembourg, Belgique)
-
Located in
Library
/
RBINS Staff Publications 2023
-
A case of predation by Naja samarensis (Elapidae) on Cyclocorus nuchalis nuchalis (Lamprophiidae) on Mindanao Island, Philippines
-
Located in
Library
/
RBINS Staff Publications 2020
-
Observations on the reproductive biology of Laurentophryne parkeri (Laurent, 1950) based on the holotype
-
Located in
Library
/
RBINS Staff Publications 2017