Skip to content. | Skip to navigation

Personal tools

You are here: Home
3933 items matching your search terms.
Filter the results.
Item type

New items since

Sort by relevance · date (newest first) · alphabetically
Techreport Reference D source code Lithostratigraphic identification sheet Wurfeld Formation
Located in Library / RBINS Staff Publications 2022
Techreport Reference Lithostratigraphic identification sheet Poppel Facies
Located in Library / RBINS Staff Publications 2022
Techreport Reference ECMAScript program Lithostratigraphic identification sheet Boncelles Formation
Located in Library / RBINS Staff Publications 2022
Techreport Reference Lithostratigraphic identification sheet Wintelre Member (Veldhoven Formation)
Located in Library / RBINS Staff Publications 2022
Article Reference Pleuropholis germinalis n. sp. a new Pleuropholidae (Neopterygii, Teleostei) from the Early Cretaceous of Bernissart, Belgium
Located in Library / RBINS Staff Publications 2022
Article Reference Vertebrate predation in the Late Devonian evidenced by bite traces and regurgitations: implications for an early tetrapod freshwater ecosystem
The terrestrialization process by vertebrates occurred during the Devonian period, with fully land-dwelling tetrapods recorded in the Carboniferous. Thus, the Late Devonian is an important period for deciphering the ecological pressures that applied during the water-to-land transition. Higher predation pressures in the underwater environment have been suggested as an influential biotic evolutionary factor in this key habitat shift. Direct evidence of ancient predation on Palaeozoic vertebrates is seen in the form of rare traces preserved on fossils, and these range from trauma observed on the skeleton (such as attack marks) to ingested food remains (bromalites). The late Famennian freshwater ecosystem of Strud (Belgium) consists of a rich assemblage of many coeval gnathostomes or jawed fishes (placoderms, ‘acanthodians’, actinopterygians, and various sarcopterygian groups including tetrapods). Here we analyse the record of direct evidence for predation in the Strud vertebrate fossil assemblage. We recognize 12 regurgitalites and 13 bite traces, including a rare case of a tooth embedded in its original prey body target. Fossils from regurgitalites were imaged using scanning electron microscopy and chemically analysed to test for their possible ingestion signature by comparison with other isolated skeletal remains from the same locality. From this evidence, tristichopterid tetrapodomorphs are inferred to be the highest consumers of the trophic network, targeting small placoderms, and porolepiforms, and probably congeners. We observe two possible prey patterns in regurgitalites, for sarcopterygians and actinopterygians, both of which are associated with acanthodians. In Strud, no trophic position can be deduced for tetrapods from direct fossil evidence of predation.
Located in Library / RBINS Staff Publications 2022
Techreport Reference Troff document Lithostratigraphic identification sheet Voort Member (Veldhoven Formation)
Located in Library / RBINS Staff Publications 2022
Techreport Reference Lithostratigraphic identification sheet Veldhoven Formation
Located in Library / RBINS Staff Publications 2022
Article Reference Checklist of ant (Hymenoptera: Formicidae) species from Nyungwe tropical rain forest, South-Western Rwanda
Tropical rain forests are inhabited by a wide range of plant and animal diversity. However, little is known about the diversity of ant (Hymenoptera: Formicidae) species in these areas. To fill the gap, a study has been conducted in seven sites inside Nyungwe National Park, a tropical rain forest located in South-Western Rwanda. Data have been collected in October 2021 through a quick sampling using pitfall traps, arboreal traps, baiting, Winklers, and hand searching of nests in leaf litter, soil, rotten and fallen wood, and under stones. Collected ant specimens have been identified to subfamily, genus and species levels by using the identification keys. Names of species have been confirmed after comparing the findings with the specimens housed at the Royal Belgian Institute of Natural Science (Brussels, Belgium) and at Kiko Gomez’s personal collection (Barcelona, Spain). A total of 7 subfamilies, 28 genera and 74 species were sampled. The subfamily Myrmicicnae had more genera and species compared with other subfamilies. Further, 9 genera and 43 species were collected in Rwanda for the first time, while 13 species were potentially undescribed ant species. High number of species has been sampled in the sites located in secondary forest at Karamba (53 species) and Pindura (33 species). We recommend intensive sampling in other locations of Nyungwe tropical rainforest and in the rest of Rwanda mountain tropical rain forests to get a clear view on the diversity of ant species in Rwanda.
Located in Library / RBINS Staff Publications 2022
Inproceedings Reference Variation in space and time of ant distribution among ground layers in an ecuadorian premontane forest
Nearly half of the ant species present in a tropical forest are directly in contact with the ground for nesting or foraging, with evidence of vertical stratification among ground layers (i.e., surface, litter, and soil). How ants in each layer respond to environmental factors and to seasonality remains little studied. We hypothesized that ant species distribution varied spatially and seasonally among the three ground layers and that their distribution was distinctly affected by various abiotic and biotic factors. The ant distribution was analysed spatio-temporally: vertically (between the ground surface, leaf-litter, and mineral soil, using pitfalls, Winkler, and soil cores), horizontally (every meter along a 100 m transect) and seasonally (between the dry and the rainy seasons). Four environmental parameters were measured every meter along the transect: canopy openness, slope, leaf-litter volume and soil properties. Our results showed a clear vertical stratification, with distinct faunal composition in each layer and a strong seasonal effect. Stable distribution of several dominant species between seasons suggests a low nest relocation rate. During the dry season, higher ant richness and abundance were found in pitfall traps suggesting higher activity on the surface of the forest floor. Similarly, higher ant richness and abundance found in the soil during the dry season suggest the migration of drought-sensitive species downwards deeper into the soil. Species richness and dominant species distribution were related to distinct factors according to the layer considered; we found strong correlations between the quantity of leaf-litter and dominant ant species distribution and species richness in the leaf-litter layer, while no correlation was found with any factor in the soil layer. While soil properties influenced the ant distribution at the kilometer scale they had little influence at the meter scale.
Located in Library / RBINS Staff Publications 2018