Skip to content. | Skip to navigation

Personal tools

You are here: Home
4607 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Repeated unidirectional introgression of nuclear and mitochondrial DNA between four congeneric Tanganyikan cichlids.
With an increasing number of reported cases of hybridization and introgression, interspecific gene flow between animals has recently become a widely accepted and broadly studied phenomenon. In this study, we examine patterns of hybridization and introgression in Ophthalmotilapia spp., a genus of cichlid fish from Lake Tanganyika, using mitochondrial and nuclear DNA from all four species in the genus and including specimens from over 800 km of shoreline. These four species have very different, partially overlapping distribution ranges, thus allowing us to study in detail patterns of gene flow between sympatric and allopatric populations of the different species. We show that a significant proportion of individuals of the lake-wide distributed O. nasuta carry mitochondrial and/or nuclear DNA typical of other Ophthalmotilapia species. Strikingly, all such individuals were found in populations living in sympatry with each of the other Ophthalmotilapia species, strongly suggesting that this pattern originated by repeated and independent episodes of genetic exchange in different parts of the lake, with unidirectional introgression occurring into O. nasuta. Our analysis rejects the hypotheses that unidirectional introgression is caused by natural selection favoring heterospecific DNA, by skewed abundances of Ophthalmotilapia species or by hybridization events occurring during a putative spatial expansion in O. nasuta. Instead, cytonuclear incompatibilities or asymmetric behavioral reproductive isolation seem to have driven repeated, unidirectional introgression of nuclear and mitochondrial DNA into O. nasuta in different parts of the lake.
Located in Library / RBINS Staff Publications
Article Reference A mitochondrial phylogeographic scenario for the most widespread African rodent species , Mastomys natalensis
In order to evaluate the contribution of geological, environmental, and climatic changes to the spatial distri- bution of genetic variation of Mastomys natalensis, we analysed cytochrome b sequences from the whole dis- tribution area of the species to infer its phylogeographic structure and historical demography. Six well-supported phylogroups, differentiated during the Pleistocene, were evidenced. No significant correlation between genetic and geographic distances was found at the continental scale, and the geographic distributions of the observed phylogroups have resulted from extensive periods of isolation caused by the presence of putative geographic and ecological barriers. The diversification events were probably influenced by habitat contraction/expansion cycles that may have complemented topographic barriers to induce genetic drift and lineage sorting. According to our results, we propose a scenario where climate-driven processes may have played a primary role in the differ- entiation among phylogroups.
Located in Library / RBINS Staff Publications
Article Reference Establishment of ant communities in forests growing on former agricultural fields: Colonisation and 25 years of management are not enough (Hymenoptera: Formicidae)
Located in Library / RBINS Staff Publications
Article Reference Changes in the distribution of carabid beetles in Belgium revisited: Have we halted the diversity loss?
Located in Library / RBINS Staff Publications
Article Reference Ant biodiversity conservation in Belgian calcareous grasslands: active management is vital
Located in Library / RBINS Staff Publications
Article Reference Acceptance of two native myrmecophilous species, Platyarthrus hoffmannseggii (Isopoda : Oniscidea) and Cyphoderus albinus (Collembola : Cyphoderidae) by the introduced invasive garden ant Lasius neglectus (Hymenoptera : Formicidae) in Belgium
Located in Library / RBINS Staff Publications
Article Reference Loss of genetic diversity and increased genetic structuring in response to forest area reduction in a ground dwelling insect: a case study of the flightless carabid beetle Carabus problematicus (Coleoptera: Carabidae)
Located in Library / RBINS Staff Publications
Article Reference Local extinction processes rather than edge effects affect ground beetle assemblages from fragmented and urbanized old beech forests
Local extinction of specialist species due to fragmentation is one of the major causes of biodiversity loss. Increased extinction rates in smaller fragments are expected to result from both smaller local population sizes, which increase the effect of environmental or demographic stochasticity, and increased edge effects. However, the relative effect sizes of these two factors are still poorly investigated. We attempt to disentangle these effects on ground beetle communities of temperate broadleaved woodland fragments situated in one of the most urbanized regions in Belgium. Assemblages were sampled along transects that extended from 30 m outside to 100 m inside both small and large historic forest fragments. Although species assemblages within the forest were highly distinct compared to those sampled outside the forest, species turnover along these transects was less pronounced within forest fragments indicating only weak edge effects. The magnitude of edge effects did not differ significantly between large and small fragments. However, larger differences in species composition were observed with respect to fragment size, wherein highly specialized species persisted only in the largest fragment. In sum, increased local extinction processes in smaller fragments, which led to a strong reduction of specialized and wingless forest species, appeared to be the most important factor that drives changes in species composition in this historic and fragmented woodland complex.
Located in Library / RBINS Staff Publications
Article Reference Ideal Free distribution of fixed dispersal phenotypes in a wing dimorphic beetle in heterogeneous landscapes
According to the ideal free distribution (IFD) theory, individuals that are able to perceive the quality of different patches in a landscape and disperse freely are expected to redistribute themselves proportionally to the carrying capacities of heterogeneous patches. Here, we argue that when dispersal is unconditional and genetically fixed, a coalition of sedentary and dispersing phenotypes can attain an IFD under spatio-temporally uncorrelated variation in fitness. This not only leads to a stable polymorphism of both dispersal phenotypes, but also implies that the number of dispersing individuals should on average be equal among patches and determined by the carrying capacity of the smallest local populations in the landscape. Differences in carrying capacity among patches are thus only reflected by changes in the number of sedentary individuals. Individual-based simulations show that this mechanism can be generalized over a wide range of spatio-temporal conditions and dispersal strategies. Moreover, these expectations are in strong agreement with empirical data on the density of both dispersal phenotypes of the wing dimorphic ground beetle Pterostichus vernalis within and among ten different landscapes. Hence, for the first time, these results demonstrate that this mechanism serves as a plausible alternative to the competition-colonization model to explain the spatial distribution of fixed dispersal phenotypes in heterogeneous landscapes. Understanding of the frequency distributions of individuals expressing discrete dispersal morphs moreover improves our predictive and management capabilities for a broad range of species, for which we currently typically rely on using mean dispersal rates.
Located in Library / RBINS Staff Publications
Article Reference Human-Induced Expanded Distribution of Anopheles plumbeus, Experimental Vector of West Nile Virus and a Potential Vector of Human Malaria in Belgium
For the majority of native species, human-created habitats provide a hostile environment that prevents their colonization. However, if the conditions encountered in this novel environment are part of the fundamental niche of a particular species, these low competitive environments may allow strong population expansion of even rare and stenotopic species. If these species are potentially harmful to humans, such anthropogenic habitat alterations may impose strong risks for human health. Here, we report on a recent and severe outbreak of the viciously biting and day-active mosquito Anopheles plumbeus Stephens, 1828, that is caused by a habitat shift toward human-created habitats. Although historic data indicate that the species was previously reported to be rare in Belgium and confined to natural forest habitats, more recent data indicate a strong population expansion all over Belgium and severe nuisance at a local scale. We show that these outbreaks can be explained by a recent larval habitat shift of this species from tree-holes in forests to large manure collecting pits of abandoned and uncleaned pig stables. Further surveys of the colonization and detection of other potential larval breeding places of this mosquito in this artificial environment are of particular importance for human health because the species is known as a experimental vector of West Nile virus and a potential vector of human malaria.
Located in Library / RBINS Staff Publications