Skip to content. | Skip to navigation

Personal tools

You are here: Home
1582 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Inproceedings Reference A Paleocene occurrence of cornelian cherries Cornus subg. Cornus in the land-mammal site of Berru (Paris Basin, France)
Cornus subgenus Cornus, also called cornelian cherries, is a relatively ancient clade of dogwoods with a complex biogeographic history. Their fossil record attests to a distribution in North America during the Late Cretaceous and Paleocene, whereas the earliest fossil record in Europe is dated as early as the Eocene. Here, we describe a new occurrence of cornelian cherries based on permineralized endocarps from the late Paleocene (ca. 58 Ma) land-mammal locality of Berru, in Northwest France. The 48 studied specimens possess characteristic cornelian cherry endocarp morphology with locules associated with a dorsal germination valve, no central vascularization, and the presence of numerous secretory cavities in the endocarp wall. In addition, the presence of (three)-four locules and a large apical depression strongly suggest affinities with the early Eocene species Cornus multilocularis from the London Clay Formation. This new occurrence expands the stratigraphic range of the species by approximately four to six million years and is the first unequivocal evidence of cornelian cherries in Europe during the Paleocene. The biogeographical history of cornelian cherries remains complex to explore because of its ancient distribution in the Cretaceous and a geographically and stratigraphically patchy Cenozoic record.
Located in Library / RBINS Staff Publications 2025
Proceedings Reference FORENSIC CLASSIFICATION OF METEORITES: THE CASE OF AN ORIENTED SPECIMEN FROM THE BELGIAN ANTARCTIC METEORITE COLLECTION
Introduction: The meteorite classification processes require a sequence of semi-destructive to destructive analyses to elucidate the internal texture and chemical composition of the sample. Several methods have been proposed for classifying meteorites using a non-destructive approach such as magnetic susceptibility [1] or 3D petrographic analysis [2]. Specimens with unique orientation forms such as cone or shield-shaped, are often prioritized for non-destructive classification due to their significant exhibition value and insight into the aerodynamics of extraterrestrial material during their atmospheric entrance [3,4]. In this study, we present a description employing non-destructive analysis to classify a newly found flattened shield-shaped Antarctic meteorite discovered during the Belgian meteorite reconnaissance expedition 2022-2023 in the Sør Rondane area, East Antarctica [5]. This approach promises to provide detailed internal structural and information on physical properties without compromising the integrity of the sample. Methods: We utilized the X-ray Computed Tomography (XCT) RX Solutions EasyTom150 device at the Institute of Natural Sciences (Brussels, Belgique) to analyze the sample with dimensions of 37.1 mm x 44.0 mm x 52.6 mm (Fig. 1). A copper filter of 0.4 mm was used. The sample was scanned at a voxel size of 58.2 μm using the large focal spot mode at 145 kV, 38 W and 260 μA. We employed the program 3D Slicer [6] to analyze the three-dimensional properties and calculate the physical parameters. Additionally, magnetic susceptibility measurements were conducted on the field using an SM30 instrument. Preliminary results: Various forms of deformation, notably radial extension features, were detected, likely indicative of shock experiences undergone by the sample before entering the Earth’s atmosphere, hence corroborating its extraterrestrial origin (Fig. 1). Preliminary magnetic susceptibility measurement on the field indicated a value typical of L chondrites (log χ ~ 4.7 [5]). The interior XCT slices reveal that the sample comprises a dense metallic phase with few non-metallic inclusions, primarily located on the face opposite to the entry direction (red arrow in Fig. 1b). The total volume measures 22.09 cm3, with a corresponding mass of 151.1 g, indicating a meteorite bulk density of 6.8 g cm-3 comparable to iron meteorites (bulk density between 7 and 8 g cm-3 [7]). This is at odds with the preliminary magnetic susceptibility measurement. Additional non-destructive analyzes will be needed, notably μ-XRF measurements to offer a better comprehension of the origin of the sample. This underlines the difficulty of classifying a sample in a non-destructive manner
Located in Library / RBINS Staff Publications 2024
Inproceedings Reference Tintigny: A Polymict Eucrite from Belgium
In February 1971, a meteorite fell on the roof of a barn belonging to Mr. E. Schmitz in Tintigny, a village in southern Belgium. Upon its recovery, its meteoritic origin was confirmed by the schoolteacher, Mr. A. Rossignon who then looked after the sample. In 2017, for the first time, the meteorite was given to specialists for a detailed examina-tion and classification. We used various analytical techniques to characterize its mineralogy, elemental, and isotopic composition. Based on the obtained data, we classified it as a polymict eucrite, a meteorite originating from 4 Vesta, and named it Tintigny [1]. Tintigny is partly covered by shiny black fusion crust. Its interior mainly exhibits a light grey color and shows a brecciated texture composed of a fine-grained matrix, hosting darker crystals and cm-sized dark grey clasts. Under the microscope, a brecciated sub-ophitic basaltic texture mainly composed of plagioclase/maskelynite and clinopy-roxene is dominant. In addition to the dominant sub-ophitic texture, at least three distinct textures exposed in clasts are observable. At least two generations of shock effects (such as fractures), are present in the sample: those limited to clasts and large crystals, and those that crosscut both the large grains and the matrix. The accessory minerals include troilite, ilmenite, chromite, FeNi metal, and silica. Mineral chemistry calculations of pyroxene end-members show ranges from 8.5 to 60.7 mol% for enstatite, 30.1–70.0 mol% for ferrosilite, and 2.6–38.4 mol% for wollastonite. Based on these values, most pyroxenes in Tintigny are pigeonite and augite [2]. The Fe/Mn ratios of pyroxenes range from 27.1 to 39.3, with the highest ratio observed in pyroxene from the symplectitic clast. Fe/Mn and Fe/Mg ratios in low-Ca pyroxene (Wo<10) are 30.2±4.4 and 0.8±0.3, respectively. These ratios in high-Ca pyroxene (n=8) are 34.3±3.7 for Fe/Mn and 2.6±2.4 for Fe/Mg. The average pyroxene Fe/Mn ratio for all pyroxene is 32.5±4.4 (SD, n=14). Fe/Mg ranges from 0.6 to 8.2, with an average value of 1.8±2.0 (SD, n±14). Considering pyroxene Fe/Mn ranges of 40±11, 62±18, 32±6, and 30±2 for basaltic rocks from the Earth, Moon, Mars, and 4 Vesta (eucrites), respectively, and based on our data, particularly those of low-Ca py-roxene, Tintigny falls in the range of basaltic eucrites [3]. The bulk rock Fe/Mn and Fe/Mg ratios of Tintigny are 33.9 and 3.1, respectively. These values overlap with those measured for howardite-eucrite-diogenite (HED) and martian meteorites [4]. With a Ga/Al ratio of 4.17×10-5, Tintigny falls within the range of those of eucrites. Using the CI-normalized elemental concentration, we can see strong simi-larities between Tintigny and noncumulate eucrites, which is also reflected based on the abundance of TiO2 (0.63) and FeO/MgO ratio (2.66) in Tintigny. The bulk oxygen isotopic composition of Tintigny, as determined by laser fluorination, is also consistent with it being an HED (δ17O=1.72±0.04 ‰; δ18O=3.76±0.08‰; Δ17O=-0.25±0.01 ‰ (n=2, errors 2SD)), with a composition that plots close to the Eucrite Fractionation Line [5]. Based on the Meteoritical Bulletin Database, only 70 HED falls have been reported so far. Including Tintigny, only 39 eucrite falls are known to date, 11 of them occurred in Europe, with Tintigny being the only one from Belgium. In addition to the scientific importance of studying a eucrite fall like Tintigny, we emphasize the significance of the discovery of a historical meteorite fall by drawing attention to national scientific heritage that must be properly un-derstood and safeguarded for generations of scientists, scholars, and amateurs to come. Nowadays, together with four other meteorites from Belgium (Hautes Fagnes LL5, Lesves L6, St. Denis Westrem L6, and Tourinnes-la-Grosse L6), the Tintigny achondrite is exhibited in the meteorite gallery of the Institute of Nat-ural Sciences in Brussels and is open to the public for visits.
Located in Library / RBINS Staff Publications 2024
Inproceedings Reference Geodiversity of a stone deposit in the old city centre of Antwerp. Source of information on roman and medieval trade and use. 8th International Geologica Belgica Meeting 2024, 11-13 September 2024, Liège.
Located in Library / RBINS Staff Publications 2024
Techreport Reference Archeologische opgraving Noorderterras. Natuursteen in de depositie van ballaststeen en hergebruikte bouwmaterialen van de Burcht, Scheldekaaien – Noorderterras (Antwerpen): aanvullend onderzoek van gesteenten opgeslagen in het Felixarchief.
Located in Library / RBINS Staff Publications 2024
Article Reference Een licht gekleurd alternatief voor blauwe steen: Comblanchien.
Located in Library / RBINS Staff Publications 2024
Techreport Reference Natuursteenonderzoek Sint-Amanduskerk Denderleeuw. In opdracht van : INTERGEMEENTELIJKE SAMENWERKING VOOR STREEKONTWIKKELING IN ZUID OOST-VLAANDEREN
Located in Library / RBINS Staff Publications 2024
Techreport Reference Middeleeuwse aanlegplaats “Bierwerf” aan de Scheldekaaien in Antwerpen. Natuursteenbeschrijving en -interpretatie. Studie in opdracht van: Stad Antwerpen, Dienst Stadsontwikkeling.
Located in Library / RBINS Staff Publications 2024
Inproceedings Reference The biodiversity of the Eocene Messel Pit
The Messel Pit is a Konservat-Lagerstätte in Germany, representing the deposits of a latest early to earliest middle Eocene maar lake, and one of the first palaeontological sites to be included on the list of UNESCO World Heritage Sites. One aspect of Messel that makes it so extraordinary is that its sediments are rich in different fossilised organisms – microfossils, plants, fungi, invertebrate animals and vertebrates – that are rarely preserved together. We present an updated list of all taxa, named or not, that have been documented at Messel, comprising 1409 taxa, which represent a smaller but inexactly known number of biological species. The taxonomic list of Labandeira and Dunne (2014) contains serious deficiencies and should not be used uncritically. Furthermore, we compiled specimen lists of all Messel amphibians, reptiles and mammals known to us. In all, our analyses incorporate data from 32 public collections and some 20 private collections. We apply modern biodiversity-theoretic techniques to ascertain how species richness tracks sampling, to estimate what is the minimum asymptotic species richness, and to project how long it will take to sample a given proportion of that minimum richness. Plant and insect diversity is currently less well investigated than vertebrate diversity. Completeness of sampling in aquatic and semiaquatic, followed by volant, vertebrates is higher than in terrestrial vertebrates. Current excavation rates are one-half to two-thirds lower than in the recent past, leading to much higher estimates of the future excavation effort required to sample species richness more completely, should these rates be maintained. Species richness at Messel, which represents a lake within a paratropical forest near the end of the Early Eocene Climate Optimum, was generally higher than in comparable parts of Central Europe today but lower than in present-day Neotropical biotopes. There is no evidence that the Eocene Messel ecosystem was a “tropical rainforest.”
Located in Library / RBINS Staff Publications 2024
Article Reference West African Hastula (Gastropoda: Terebridae) with the description of three new cryptic species from the Cape Verde and Canary Islands
Located in Library / RBINS Staff Publications 2023