Skip to content. | Skip to navigation

Personal tools

You are here: Home
1714 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Inproceedings Reference Ranking CO2 storage capacities and identifying their technical, economic and regulatory constraints: A review of methods and screening criteria.
One of the greatest challenges of the last decades in the fight against climate change has been to achieve net-zero emissions by mid-century. According to the US EPA (2016), in 2014, global anthropogenic emissions of carbon dioxide (CO2) accounted for ~64% of the greenhouse effect. Carbon dioxide capture and storage (CCS) plays an irreplaceable part as a mitigation technology that avoids CO2 emissions at their source and bridges the transition into a non-carbon-based energy future. The International Energy Agency (IEA) estimates that the need to store CO2 will grow from 40 Mt/y at present to more than 5000 Mt/y by 2050. Additionally, in the IEA’s Sustainable Development Scenario, which aims for global net-zero CO2 emissions from the energy sector by 2070, CCS needs to become a global industry supporting emissions reductions across the overall energy system. CCS technologies essentially consist of capturing and compressing the CO2 at the source and then transport it towards deep suitable rock formations where it is injected to be permanently stored. The key to successful and permanent CO2 storage is the proper analysis and characterization of the reservoir and seal formation. Among the types of reservoir suitable for CO2 storage are unmined coal beds, depleted oil and gas fields, EOR/EGR, saline aquifers, man-made caverns, and basaltic formations (IPCC, 2005). The storage capacity of any of these reservoirs is the subsurface commodity whose quantities and properties are assessed when existing data is provided. Capacity estimations bring their own level of uncertainty and complexity according to the scale at which they are addressed and the nature of the geological conditions of the reservoir. This degree of uncertainty should be accounted for in every estimation (Bradshaw et al., 2007) Resource classification systems (RCS) are frameworks that establish the principles and boundaries for each level of capacity assessment. By making use of these frameworks, it is possible to properly allocate the stage of development of a resource (United Nations, 2020). For every level of assessment, the principles of the estimation change and so do the scale and purpose. As the analysis moves forward, a prospective site develops and exhaustive information is acquired, initial estimations are adjusted, and uncertainty is likely to reduce. Additionally, different economic, technical, regulatory, environmental and societal factors are integrated into the assessment to bring the estimations under present conditions. For instance, if the storage capacity is to be matched with a CO2 source, detailed simulations and analyses regarding injectivity, supply rate, potential routes and economic distances must be performed to achieve a realistic estimation. However, an assessment where the main goal is to merely quantify the space available to store CO2 in a reservoir, does not consider the aforementioned limitations and will carry higher risk and uncertainty in its estimation (Bradshaw et al., 2007). Even though resource classification systems provide a solid foundation for CCS projects, they do not provide the input parameters and analyses needed to reach every level of assessment. This is why storage capacity estimation methodologies go hand in hand with RCS given that the former can give information related to the parameters and constraints considered in the estimation. No standard process has been proposed that can be followed from the starting level of a CO2 storage capacity assessment until a fully developed carbon storage resource; that is, a CO2 storage site ready to become fully operational. This paper aims to develop a methodology where the fundamental steps needed to go through every level of the resource classification systems are standardized. This methodology intends to serve as a general baseline that, regardless of the geological settings and techno-socio-economic conditions, can be adopted for any CCS assessment. The proposed methodology is built by reviewing the available capacity estimation methods for every level of assessment and identifying social, technical and economic aspects that come into play as the resource is being developed. Considering that capacity estimation methodologies can vary their approach even for the same level of assessment, the rationales behind them are expected to be determined. Such rationales can be related to in-place policy restrictions, geographical economic behavior, or the nature of the parameters contemplated. Additionally, PSS, an in-house developed tool that can assess CO2 storage reservoirs at different levels, will be proposed within the methodology. This tool is a bottom-up geotechnical and economic forecasting simulator that can generate source-sink matching for CCS projects, where technical, economic, and geological uncertainties are handled through a Monte Carlo approach for limited foresight (Welkenhuysen et al., 2016). Acknowledgements This research is carried out under the LEILAC2 project, which receives funding from the European Union’s Horizon 2020 research and innovation program under grant agreement number 884170. The LEILAC2 consortium consists of: Calix Europe SARL, HeidelbergCement AG, Ingenieurbüro Kühlerbau Neustad GmbH (IKN), Centre for Research and Technology Hellas (CERTH), Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Politecnico di Milano (POLIMI), Geological Survey of Belgium (RBINS-GSB), ENGIE Laborelec, Port of Rotterdam, Calix Limited, CIMPOR-Indústria de Cimentos SA and Lhoist Recherche et Development SA. References Bradshaw, J., Bachu, S., Bonijoly, D., Burruss, R., Holloway, S., Christensen, N. P., & Mathiassen, O. M. (2007). CO2 storage capacity estimation: Issues and development of standards. International Journal of Greenhouse Gas Control, 1(1), 62–68. https://doi.org/10.1016/S1750-5836(07)00027-8 IPCC. (2005). Carbon Dioxide Capture and Storage. https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/ United Nations. (2020). United Nations Framework Classification for Resources: Update 2019. UN. https://doi.org/10.18356/44105e2b-en US EPA. (2016). Global Greenhouse Gas Emissions Data. US EPA. https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data Welkenhuysen, K., Brüstle, A.-K., Bottig, M., Ramírez, A., Swennen, R., & Piessens, K. (2016). A techno-economic approach for capacity assessment and ranking of potential options for geological storage of CO2 in Austria. Geologica Belgica. http://dx.doi.org/10.20341/gb.2016.012
Located in Library / RBINS Staff Publications 2021
Inproceedings Reference Rapid Local Adaptations in an Invasive Frog (Xenopus laevis): the Importance of Functional Trait Measurements to Predict Future Invasions
Located in Library / RBINS Staff Publications 2020
Bibliography Folder RBINS Staff Publications 2018
Located in Library
Large Bibliography Folder RBINS Staff Publications 2023
Located in Library
Article Reference Re-description of the type species of the genera Ganesella Blanford, 1863 and Globotrochus Haas, 1935; with description of a new Ganesella species from Thailand (Eupulmonata, Camaenidae)
Located in Library / RBINS Staff Publications 2019
Inproceedings Reference Reading Minerals: Rare Element Enrichment, the Magmatic-Hydrothermal Transition, and Geochemical Exploration of Lithium Pegmatites in Ireland
The battery market for electric vehicles and renewable energy storage is dominated by rechargeable lithium-ion batteries, making lithium supply essential to climate action through decarbonization. In 2019, more than half of the world's lithium was sourced from lithium pegmatites of the Li-Cs-Ta (LCT) family, predominantly from Australia. Current global lithium supply involves long diesel-fueled maritime transport routes, which counteracts lithium's role in climate action. Responsible consumption and production require shorter supply chains from deposit to battery. Reading the mineralogical record of LCT pegmatite deposits can help address the challenge of reducing the climate impact of lithium production, by informing deposit models, mineral exploration, and geometallurgy, therefore promoting local supply. Our research focuses on a belt of LCT pegmatites, which is located along the eastern margin of the late-Caledonian S-type Leinster Batholith, southeast Ireland. The LCT pegmatites are hosted by a major regional shear zone and are part of a tin-lithium province that stretches subparallel to the Iapetus suture from Europe through Nova Scotia to North and South Carolina. We investigated crystal chemical zoning in muscovite, cassiterite, and columbite-tantalite using petrography, scanning electron microscopy, and LA-ICP-MS chemical mapping. The zoning patterns record that pegmatite rare element mineralization resulted from an interplay of magmatic crystallization, metasomatism, and hydrothermal processes. Late-stage metasomatic alteration led to partial resorption of early minerals including the lithium ore-mineral spodumene, followed by dispersion of lithium and other rare elements into country rocks, mostly within dark mica. Dispersion led to formation of geochemical halos around the LCT pegmatites with the potential to use country-rock lithogeochemistry and mica composition as geochemical vectoring tools. Geochemistry of mica in the granite host analyzed by handheld LIBS has been found to exhibit coherent spatial patterns occurring adjacent to and above LCT pegmatites known at depth from drilling. These channels of mineral-specific geochemical information are distinct from soil geochemical patterns and are not influenced by the same secondary, surface processes such as dilution. As outcrop is virtually absent in the study area, regional stream sediment geochemistry data (Geological Survey Ireland) was assessed as an LCT pegmatite exploration tool. After correcting for geologic background using a linear regression approach, catchments containing LCT pegmatites show high residuals for concentrations of both tantalum and tin. The mineralogy of stream sediment samples from a subsample of these catchments was subsequently analyzed to characterize the host minerals of tin and tantalum. Cassiterite and columbite-tantalite were identified, and both show geochemical and textural signatures that correspond to the zoning patterns mentioned above, which indicates that these minerals were derived from the local LCT pegmatites. These results suggest that, when regional geology and tectonic setting are prospective, lithium pegmatite prospectivity can be further assessed for tin-tantalum associations in (often publicly available) regional stream sediment data. Following geospatial analysis, stream sediment samples could be obtained from individual prospective catchments and their mineralogy analyzed. Local-scale geochemical surveys could follow where stream sediments of prospective catchments contain tin and tantalum oxides with chemistries and textures indicative of a lithium pegmatite source.
Located in Library / RBINS Staff Publications 2021
Article Reference Reappraisal of the extinct seal “Phoca” vitulinoides from the Neogene of the North Sea Basin, with bearing on its geological age, phylogenetic affinities, and locomotion
Located in Library / RBINS Staff Publications 2017
Article Reference Reassessment of historical sections from the Paleogene marine margin of the Congo Basin reveals an almost complete absence of Danian deposits
The early Paleogene is critical for understanding global biodiversity patterns in modern ecosystems. During this interval, Southern Hemisphere continents were largely characterized by isolation and faunal endemism following the breakup of Gondwana. Africa has been proposed as an important source area for the origin of several marine vertebrate groups but its Paleogene record is poorly sampled, especially from sub-Saharan Africa. To document the early Paleogene marine ecosystems of Central Africa, we revised the stratigraphic context of sedimentary deposits from three fossil-rich vertebrate localities: the Landana section in the Cabinda exclave (Angola), and the Manzadi and Bololo localities in western Democratic Republic of Congo. We provide more refined age constraints for these three localities based on invertebrate and vertebrate faunas, foraminiferal and dinoflagellate cyst assemblages, and carbon isotope records. We find an almost complete absence of Danian-aged rocks in the Landana section, contrary to prevailing interpretations over the last half a century (only the layer 1, at the base of the section, seems to be Danian). Refining the age of these Paleocene layers is crucial for analyzing fish evolution in a global framework, with implications for the early appearance of Scombridae (tunas and mackerels) and Tetraodontiformes (puffer fishes). The combination of vertebrate fossil records from Manzadi and Landana sections suggests important environmental changes around the K/Pg transition characterized by an important modification of the ichthyofauna. A small faunal shift may have occurred during the Selandian. More dramatic is the distinct decrease in overall richness that lasts from the Selandian to the Ypresian. The Lutetian ofWest Central Africa is characterized by the first appearance of numerous cartilaginous and bony fishes. Our analysis of the ichthyofauna moreover indicates two periods of faunal exchanges: one during the Paleocene, where Central Africa appears to have been a source for the European marine fauna, and another during the Eocene when Europe was the source of the Central Africa fauna. These data indicate that Central Africa has had connections with the Tethyian realm.
Located in Library / RBINS Staff Publications 2019
Article Reference Reassessment of the iconic Oligo-Miocene heterodont dolphin Squalodon: a redescription of the type species S. grateloupii
Located in Library / RBINS Staff Publications 2025
Article Reference Recent advances in heteromorph ammonoid palaeobiology
Located in Library / RBINS Staff Publications 2021