Skip to content. | Skip to navigation

Personal tools

You are here: Home
1390 items matching your search terms.
Filter the results.
Item type

New items since

Sort by relevance · date (newest first) · alphabetically
Article Reference On the arachnofauna of the Jean Massart botanical garden (Brussels-Capital Region, Belgium)
Located in Library / RBINS Staff Publications 2022 OA
Article Reference From a pair to a dozen: the piscivorous species of Haplochromis (Cichlidae) from the Lake Edward system
Located in Library / RBINS Staff Publications 2022 OA
Article Reference Hybotidae (Diptera) of the Botanic Garden Jean Massart (Brussels-Capital Region, Belgium) with description of two new Platypalpus species and comments on the Red Data List
Located in Library / RBINS Staff Publications 2022 OA
Article Reference The last interglacial‑glacial cycle in the Meuse Valley (southern Belgium) inferred from the amphibian and reptile assemblages: implications for Neanderthals and anatomically modern humans
The Meuse and its tributary valleys contain numerous Late Pleistocene cave sites that have yielded one of the largest collections of Neanderthal and Mousterian lithic industries in Europe. Today, it is an important north–south migratory corridor for flora and fauna, generating rich biotopes. The Quaternary collections of the Royal Belgian Institute of Natural Sciences (Brussels, Belgium) are here used to complement our knowledge of the successive herpetofaunal assemblages in Belgium during the last interglacial-glacial cycle (marine isotope stages 5 to 1). Herpetofauna from 18 caves are described for the first time. In total, 17 taxa (10 amphibians and seven reptiles) are identified, three of which correspond to their first fossil record for Belgium (Alytes obstetricans, Pelobates fuscus, and Hyla arborea). The thermophilic snake Zamenis longissimus is documented for the first time in the Holocene (Atlantic/Subboreal period) of Belgium. After marine isotope stage (MIS) 5, the Belgian herpetofauna was still reasonably diverse during MIS 3, but it seems to be represented only by the common frog Rana temporaria and a viper during MIS 2. Paleoenvironmental and paleoclimatic reconstructions are proposed for a selection of the chronologically best-constrained sites, using the quantified ecology method. More specifically, the late Magdalenian of the Trou de Chaleux is reconstructed as particularly cold and dry. The seasonal contrast reaches its maximum during this period. The quantitative parameters calculated in this study provide a new paleoecological context for understanding the conditions with which the successive human species had to cope in Northwestern Europe during the last interglacial-glacial cycle.
Located in Library / RBINS Staff Publications 2022 OA
Article Reference Revision of the oldest varanid, Saniwa orsmaelensis Dollo, 1923, from the earliest Eocene of northwest Europe
Saniwa is an extinct genus of varanid squamate from the Eocene of North America and Europe. Up to now, only one poorly known species, Saniwa orsmaelensis Dollo, 1923, has been reported from Europe. Diagnostic material was limited to vertebrae with only preliminary description and no figure provided, except of one dorsal vertebra that was designated as the lectotype. New specimens from the earliest Eocene of Dormaal, Belgium and Le Quesnoy, France, including recently recovered skull ma-terial, are described and illustrated here. These fossils representing the oldest varanid squamate allow further comparisons with the type species, Saniwa ensidens Leidy, 1870, from the early and middle Eocene of North America and to propose a new diagnosis for S. orsmaelensis. Its arrival in Europe is probably linked to rapid environmental changes around the Paleocene Eocene Thermal Maximum (PETM). The occurrence of S. orsmaelensis is restricted to the early Eocene of northwest Europe and paleogeographic considerations regarding the distribution of the genus Saniwa Leidy, 1870 suggest an Asian origin, but an African origin cannot be completely excluded.
Located in Library / RBINS Staff Publications 2022 OA
Article Reference A new gecko from the earliest Eocene of Dormaal, Belgium: a thermophilic element of the ‘greenhouse world’
We here describe a new gekkotan lizard from the earliest Eocene (MP 7) of the Dormaal locality in Belgium, from the time of the warmest global climates of the past 66 million years (Myr). This new taxon, with an age of 56 Myr, together with indeterminate gekkotan material reported from Silveirinha (Portugal, MP 7) represent the oldest Cenozoic gekkotans known from Europe. Today gekkotan lizards are distributed worldwide in mainly warm temperate to tropical areas and the new gecko from Dormaal represents a thermophilic faunal element. Given the Palaeocene–Eocene thermal maximum at that time, the distribution of this group in such northern latitudes (above 50° North – the latitude of southern England) is not surprising. Although this new gekkotan is represented only by a frontal (further, dentaries and a mandibular fragment are described here as Gekkota indet. 1 and 2—at least two gekkotan species occurred in Dormaal), it provides a new record for squamate diversity from the earliest Eocene ‘greenhouse world’. Together with the Baltic amber gekkotan Yantarogekko balticus, they document the northern distribution of gekkotans in Europe during the Eocene. The increase in temperature during the early Eocene led to a rise in sea level, and many areas of Eurasia were submerged. Thus, the importance of this period is magnified by understanding future global climate change.
Located in Library / RBINS Staff Publications 2022 OA
Article Reference Brawn before brains in placental mammals after the end-Cretaceous extinction
Mammals are the most encephalized vertebrates, with the largest brains relative to body size. Placental mammals have particularly enlarged brains, with expanded neocortices for sensory integration, the origins of which are unclear. We used computed tomography scans of newly discovered Paleocene fossils to show that contrary to the convention that mammal brains have steadily enlarged over time, early placentals initially decreased their relative brain sizes because body mass increased at a faster rate. Later in the Eocene, multiple crown lineages independently acquired highly encephalized brains through marked growth in sensory regions. We argue that the placental radiation initially emphasized increases in body size as extinction survivors filled vacant niches. Brains eventually became larger as ecosystems saturated and competition intensified.
Located in Library / RBINS Staff Publications 2022 OA
Inproceedings Reference Vestibular sensitivity and locomotor behavior in early paleocene mammals
The end-Cretaceous extinction triggered the collapse of ecosystems and a drastic turnover of mammalian communities. During the Mesozoic, mammals were ecologically diverse, but less than extant species. Modern ecological richness was established by the Eocene, but questions remain about the ecology of the first wave of mammals radiating after the extinction. Postcranial fossils are often used to determine locomotor behavior; however, the semicircular canals of the inner ear also represent a reliable proxy. These canals detect the angular acceleration of the head during locomotion and transmit neuronal signals to the brain to allow stabilization of the eyes and head. Accordingly, vestibular sensitivity to rapid rotational head movements is higher in species with a larger canal radius of curvature and more orthogonal canals. We used high-resolution computed tomography scanning to obtain inner ear virtual endocasts for 30 specimens. We supplemented these with data from the literature to construct a database of 79 fossils from the Jurassic to the Eocene and 262 extant mammals. We compared data on canal morphology and another lifestyle proxy, the size of the petrosal lobules, which have a role in maintaining eyes’ movements and position. We find that Paleocene mammals exhibited a lower average and more constricted range of Agility Indices (AI), a new measure of canal radius size relative to body size, compared to Mesozoic, Eocene and extant taxa. In the early Paleocene, body mass and canal radius increased, but the former outpaced the latter leading to an AI decline. Similarly, their petrosal lobules were relatively smaller on average compared to other temporal groups, which suggests less ability for fast movements. Additionally, Paleocene mammals had similar AIs to extant scansorial and terrestrial quadrupeds. In contrast, the lack of canal orthogonality change from the Mesozoic to the Paleocene indicates no trend toward lower vestibular sensitivity regardless of changes in body size. This result may reflect functional differences between canal orthogonality and radius size. Our results support previous work on tarsal morphology and locomotor behavior ancestral state reconstruction suggesting that ground dwelling mammals were more common than arboreal taxa during the Paleocene. Ultimately, this pattern may indicate that the collapse of forested environments immediately after extinction led to the preferential survivorship of more terrestrially adapted mammals. Funding Sources Marie Sklodowska-Curie Actions: IF, European Research Council StG, National Science Foundation, Belgian Science Policy Office, DMNS No Walls Community Initiative.
Located in Library / RBINS Staff Publications 2022 OA
Inproceedings Reference Présence d'un gecko dans l'Eocène basal de Dormaal (Belgique): un élément thermophile du PETM ?
Si le registre fossile des lézards est assez bon pour l’Eocène moyen et supérieur en Europe, il n’en va pas de même pour l’Eocène inférieur. Seule la localité de Dormaal, datant de l’Eocène basal (niveau-repère MP7,Belgique) semble faire exception. Parmi les nombreux fossiles de lézards de cette localité, nous présentons ici pour la première fois quelques rares éléments appartenant à un gecko. Ce dernier vivait donc dans nos régions durant le Maximum Thermique Paléocène-Eocène (PETM), climat le plus chaud des 66 derniers millions d’années. Ce nouveau taxon, daté de 56 Ma, est le plus ancien gecko cénozoïque connu en Europe. Avec Laonogekko lefevrei de Prémontré (MP 10, Bassin de Paris), plus jeune d’environ 5 millions d’années, ces taxons forment la radiation du Paléogène inférieur de ce clade. Aujourd’hui, les geckos sont répartis dans le monde entier, principalement dans les zones tempérées chaudes à tropicales, bien que certaines espèces puissent atteindre des régions plus froides dans les hémisphères Nord et Sud. Le nouveau gecko de Dormaal représente un élément thermophile, confirmant les préférences thermiques actuelles des geckos. Par ailleurs, la distribution de ce groupe dans des latitudes aussi septentrionales (au-dessus de 50° Nord) n’est pas surprenante durant cette période particulièrement chaude. Bien que le nouveau taxon décrit ici ne soit représenté que par un frontal et des dentaires (deux des éléments les plus fréquemment préservés chez les geckos fossiles), il fournit un nouveau record de diversité des squamates à la base de l’Eocène. Avec Yantarogekko de l’ambre éocène de la Baltique (district de Kaliningrad, nord-ouest de la Russie), ces geckos documentent la distribution septentrionale des geckos en Europe pendant l’Éocène.
Located in Library / RBINS Staff Publications 2022 OA
Article Reference De nachtvlinders (Lepidoptera) waargenomen tijdens het inventarisatieproject in de Botanische Tuin Jean Massart te Oudergem (Brussels Hoofdstedelijk Gewest)
Located in Library / RBINS Staff Publications 2022