Skip to content. | Skip to navigation

Personal tools

You are here: Home
4336 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Incollection Reference The entire European population of the Lesser White-fronted Goose wintering in the Evros Delta, Greece?
Located in Library / RBINS Staff Publications
Article Reference The Entognatha, Malacostraca and Myriapoda of the botanical garden Jean Massart (Brussels-Capital Region, Belgium)
Located in Library / RBINS Staff Publications 2023 OA
Article Reference The Environment and its Exploitation Along the Lower Scheldt River During the Roman Period (Wichelen, Belgium – Late 1st to 3rd Centuries AD)
The large number of rural Roman settlements known from the Low Countries is generally characterised by a poor preservation of ecological proxies due to the absence of waterlogged contexts. The riverside site of Wijmeers (Wichelen, Belgium), a small rural settlement located in the Lower Scheldt basin, represents a rare exception to this pattern. Due to the presence of a waterlogged sequence with Roman (late 1st–3rd centuries AD) waste layers, located only a few metres from a main building structure, and the covering of the site with alluvial sediments shortly after its abandonment, the preservation condition of charred and uncharred organic materials was exceptional. The combined study of these proxies (pollen, seeds, charcoal, mollusc shells and animal bones) presents unique insights into the subsistence economy of a Roman rural household in the Lower Scheldt valley in general, and especially its exploitation of the valley and river environments. Besides this cultural–economical perspective, the site provides key information for understanding the chronology of fluvial and alluvial processes in the Lower Scheldt Basin for a large part of the Subatlantic period (Iron Age to Early Middle Ages, ca 800 BC–900 AD).
Located in Library / RBINS Staff Publications 2022
Inbook Reference The Eocene/Oligocene Boundary in the North Sea Area: A Sequence Stratigraphic Approach
Located in Library / RBINS Staff Publications
Article Reference The Epigravettian site of Yudinovo, Russia: mammoth bone structures as ritualized middens.
Located in Library / RBINS Staff Publications 2023
Article Reference The erroneous chondrichthyan egg case assignments from the Devonian: implications for the knowledge on the evolution of the reproductive strategy within chondrichthyans
Located in Library / RBINS Staff Publications 2021
Article Reference The essential role of uncertainty and limited foresight in energy modelling Version 1
When making techno-economic simulations to evaluate new climate mitigation technologies, a main challenge is to include uncertainty. The added level of complexity often causes uncertainties to be simplified or ignored in calculations, and not addressed in final public communications. This leads to inaccurate policy and investment decisions because probability is an essential aspect of assessing future scenarios. One specific source of uncertainty is the limitation of information available about the future, which is an aspect of everyday life, but simulation-wise a complex issue. It is however essential, because it is inherently tied to understanding semi-optimal decision making. Quite fundamentally, this pleads for stepping away from rather theoretical (partly) deterministic systems, and moving towards realistic limited foresight modelling techniques, such as offered by integrated Monte Carlo calculations.
Located in Library / RBINS Staff Publications 2017
Article Reference The EU Biodiversity Strategy for 2030: Opportunities and challenges on the path towards biodiversity recovery
The European Union (EU) has committed to an ambitious biodiversity recovery plan in its Biodiversity Strategy for 2030 and the Green Deal. These policies aim to halt biodiversity loss and move towards sustainable development, focusing on restoring degraded habitats, extending the network of protected areas (PAs), and improving the effectiveness of management, governance, and funding. The achievement of conservation goals must be founded on understanding past successes and failures. Here, we summarise the strengths and weaknesses of past EU biodiversity conservation policies and practices and explore future opportunities and challenges. We focus on four main aspects: i) coordination among and within the EU Member States, ii) integration of biodiversity conservation into socio-economic sectors, iii) adequacy and sufficiency of funds, and iv) governance and stakeholder participation.Whilst past conservation efforts have benefitted from common rules across the EU and funding mechanisms, they have failed at operationalizing coordination within and across the Member States, integrating biodiversity conservation into other sectoral policies, adequately funding and effectively enforcing management, and facilitating stakeholder participation in decision-making. Future biodiversity conservation would benefit from an extended and better-managed network of PAs, additional novel funding opportunities, including the private sector, and enhanced co-governance. However, it will be critical to find sustainable solutions to potential conflicts between conservation goals and other socio-economic objectives and to resolve inconsistencies across sectoral policies.
Located in Library / RBINS Staff Publications 2022
Article Reference The EU Biodiversity Strategy for 2030: Opportunities and challenges on the path towards biodiversity recovery
The European Union (EU) has committed to an ambitious biodiversity recovery plan in its Biodiversity Strategy for 2030 and the Green Deal. These policies aim to halt biodiversity loss and move towards sustainable development, focusing on restoring degraded habitats, extending the network of protected areas (PAs), and improving the effectiveness of management, governance, and funding. The achievement of conservation goals must be founded on understanding past successes and failures. Here, we summarise the strengths and weaknesses of past EU biodiversity conservation policies and practices and explore future opportunities and challenges. We focus on four main aspects: i) coordination among and within the EU Member States, ii) integration of biodiversity conservation into socio-economic sectors, iii) adequacy and sufficiency of funds, and iv) governance and stakeholder participation.Whilst past conservation efforts have benefitted from common rules across the EU and funding mechanisms, they have failed at operationalizing coordination within and across the Member States, integrating biodiversity conservation into other sectoral policies, adequately funding and effectively enforcing management, and facilitating stakeholder participation in decision-making. Future biodiversity conservation would benefit from an extended and better-managed network of PAs, additional novel funding opportunities, including the private sector, and enhanced co-governance. However, it will be critical to find sustainable solutions to potential conflicts between conservation goals and other socio-economic objectives and to resolve inconsistencies across sectoral policies.
Located in Library / RBINS Staff Publications 2022
Article Reference The European Mesonychid Mammals: Phylogeny, Ecology, Biogeography, and Biochronology
Here we review the fossil record of European mesonychids, which are known only through the genera Dissacus and Pachyaena from Thanetian and Ypresian localities (from MP6 to MP10 reference-levels). We describe two new species, Dissacus rougierae, sp. nov., and Dissacus raslanloubatieri, sp. nov., respectively from Palette (Ypresian, ≈MP7) and from La Borie (Ypresian, ≈MP8 + 9). We also describe new specimens of D. europaeus from Berru (Thanetian, ≈MP6). The evolution of the geographic distribution of the European mesonychids is characterized by three phases: (1) the mesonychid Dissacus appeared in Europe during the Thanetian (≈ 57–58 Mya), probably due to dispersal from North America; D. europaeus survived the PETM event (≈ 56 Mya) and possibly experienced a dwarfism; (2) the large mesonychid Pachyaena migrated into Europe shortly after the Paleocene-Eocene boundary (≈ 55 Mya), but it was restricted to northwestern Europe, while Dissacus is recorded at this time only in southwestern Europe (Palette); and (3) Pachyaena rapidly disappeared from European environments, while Dissacus subsequently dispersed into northwestern Europe (≈ 54–52 Mya). We performed phylogenetic analyses in order to identify the relationships of the new species among mesonychids. It seems that the mesonychids went through two radiative events: the first during the Paleocene, the second mostly during the early Eocene. The first one corresponds to the diversification of Dissacus, while the latter resulted in the appearance of the most specialized mesonychids, such as Pachyaena and Mesonyx.
Located in Library / RBINS Staff Publications 2017