-
The Famennian succession: marine, continental and reefal facies in the Dinant Synclinorium and Vesdre area.
-
Located in
Library
/
RBINS Staff Publications
-
The first buoy for continuous measuring of surface Suspended Particulate Matter concentrations on the Belgian inner shelf
-
Located in
Library
/
RBINS Staff Publications
-
The First Upper Paleolithic Human Remains from Belgium: Aurignacian, Gravettian, and Magdalenian Fossils at the “Troisième caverne” of Goyet
-
There is ample evidence of human occupation across Northern Europe throughout various periods of the Upper Paleolithic. However, the biological characteristics of the Northern European Upper Paleolithic humans and their mortuary practices remain largely unknown because of a dearth of human fossils. In Belgium, although the presence of humans has been verified at multiple archeological sites, no Upper Paleolithic fossil has yet been identified. In this context, the recent discovery of Upper Paleolithic human remains at Goyet (Belgium) fills in an important chronological gap. The “Troisième caverne” of Goyet, excavated at the end of the 19th and early 20th century, yielded a rich archeological sequence ranging from the Middle and Upper Paleolithic to historical times. In 2008, we began documenting the Paleolithic occupations of the “Troisième caverne” by reassessing the collections from the site which heretofore had only been partially studied. The updated inventory of human remains was accomplished by conducting a detailed sorting of the paleontological collections in order to identify human remains that may have been overlooked thus far. As a result, the collections from the “Troisième caverne” now include nearly 200 human bones/bone fragments and isolated teeth that correspond to various materials from different periods. The morphometric study of the human specimens from Goyet, completed by direct radiocarbon dating and stable isotope analysis, shows that they represent two main samples—a series of Late Neandertal remains (Rougier et al. 2012) and a set of modern human specimens from three periods of the Upper Paleolithic, namely the Aurignacian, Gravettian, and Magdalenian. The latter include fragmentary elements from the cranial and infracranial skeleton. Interestingly, those from the Gravettian and Magdalenian present anthropogenic traces and ochre traces. We will discuss the importance of these new fossils in the context of the human population of Northern Europe during the Upper Paleolithic.
Located in
Library
/
RBINS Staff Publications
-
The Freshwater Animal Diversity Assessment (FADA): a taxonomic backbone for global biodiversity databases
-
Koen Martens works at the Royal Belgian Institute of natural Sciences (Brussels, Belgium). He is guest professor at the UGent and visiting professor at the State University of Maringá (Brazil). His research interests are in aquatic ecology and evolutionary biology. He is editor in chief of Hydrobiologia since 2003. Freshwater covers less than 1% of the Earth’s surface, but 10% of all animals occur only in freshwaters, a discrepancy known as the “paradox of freshwater”. Several global data repositories (such as GBIF) document extant freshwater biodiversity, but require reliable taxonomic backbones. Currently, FADA (created by Koen in 2005) groups more than 125 thousand species and 11 thousand genera of freshwater animals. However, taxonomy is a living scientific discipline, where new taxa are being described and existing taxa are being placed in new taxonomic positions. infraFADA, a three-year BELSPO project, will develop FADA into a research infrastructure that serves as taxonomic backbone for a variety of global biodiversity databases.
Located in
Library
/
RBINS Staff Publications 2024
-
The gait of Homo naledi
-
Remains of the foot, upper and lower limb, thorax and cranium of Homo naledi present a mosaic of primitive and Homo-like traits. These include curved phalanges in the hands, although a human like wrist and palm, an ape-like thorax with Homo-like vertebrae, and a shoulder girdle indicative of climbing competency. The individual bones of the foot and lower limbs largely seem to show an individual compatible with obligate bipedalism, although the pedal phalanges also show curvature [1,2]. Despite the remarkably voluminous assemblages, the H. naledi remains do not include a complete lower limb confidently ascribed to a single individual. A complete lower limb of H. naledi would be informative in what it could tell us regarding potential locomotion. The aim of this study was to reconstruct the lower limbs of the H. naledi skeleton and analyse the potential gait of H. naledi whilst also reviewing recent work on the functional morphology of H. naledi and how this pertains to inferences about bipedal locomotion. The H. naledi lower limb was constructed using estimated femoral, tibial and fibular lengths from the most complete remains of H. naledi currently available [2,3]. Pelvis remains were too fragmented to reconstruct the pelvis. All transformations were performed in ‘LhpFusionBox’, which is a musculoskeletal software primarily used to analyse gait in clinical contexts, but recently adapted for paleoanthropologists [4]. Estimated lengths were used as a reference to reconstruct the individual bones by using anatomical land-marks (ALs) to scale other H. naledi material to the size of the estimated bones. Both a modern human model and new lower limb associations of a juvenile skeleton found in the Dinaledi chamber were used as guides to reconstruct a complete lower limb. Reconstructions of individual isolated and scaled limb and foot bones were then placed together to have a complete lower limb re- construction taking into account ligaments, muscles and following the orientation of joint surfaces. The entire limb was then fused to a modern human walking motion to analyse potential locomotion. The reconstruction and biomechanical analysis of the H. naledi lower limb largely demonstrates a morphology compatible with obligate bipedalism, with a medial arch (although reduced), elongated limbs, marked bicondylar angle and joint surfaces compatible with bipedal gait. The elongation of the lower limb is generally seen as a marker of obligate bipedalism although the H. naledi limbs are exceptionally elongated relative to the diaphyseal diameter of the long bones and preserved joint proportions. Longer limbs are generally thought of as more energy efficient, but they also require a greater moment of inertia, which increases energy costs. Whilst the longer tibia (and leg) may have necessitated a longer swing phase, low limb mass (as evidenced by long bone gracility and small joints) may have offset this energetically. Other unique traits such as the flaring ilium, flattened femoral lower neck and overall general mix of primitive and Homo-like traits may not have impeded obligate bipedalism, but they may have been advantageous for climbing. Primitive traits are often thought of as vestiges of an ancient past on the way to the modern human form of obligate bipedalism, however, Homo erectus and other skeletons from the genus Homo are largely thought to be fully obligate bipedals from approximately 1.5 million years onwards, and as H. naledi has been dated between 335 and 236ka [5], it is therefore curious why this particular branch of the hominid tree would ‘hang on’ to the ‘primitive traits’ for at least a million years longer. It is therefore likely that this hominin engaged in both arboreal climbing and bipedal walking.
Located in
Library
/
RBINS Staff Publications 2019
-
The genetic and behavioural basis of female amte recognition in sympatric Opthamotilapia species
-
Located in
Library
/
RBINS Staff Publications 2017
-
The genus-concept in ancient lakes: a comparison between the Cyprideis lineage in Lake Tanganyika and the Cytherissa lineage in Lake Baikal (Crustacea, Ostracoda)
-
Located in
Library
/
RBINS Staff Publications
-
The geoarchaeology of south Qatar
-
Located in
Library
/
RBINS Staff Publications 2020
-
The geological legacy of typhoons in the Philippines
-
Located in
Library
/
RBINS Staff Publications 2019
-
The GEPATAR project: GEotechnical and Patrimonial Archives Toolbox for ARchitectural conservation in Belgium
-
Belgium is well-known for its diverse collection of built heritage, visited every year by millions of people. Because of its cultural and economic importance, conservation is a priority at both federal and regional levels. Monuments may suffer from structural instabilities related to industrial and urban development, such as groundwater extraction, mining and excavation activities. Adequate protection and preservation requires an integrated analysis of environmental, architectural and historical parameters. The aim of the GEPATAR project is to create an online interactive geo-information tool that integrates information about Belgian heritage buildings and the occurrence of ground movements. The toolbox will allow the user to view and be informed about buildings potentially at risk due to differential ground movements and thus help improving the management of built patrimony. Countrywide deformation maps were produced by applying advanced multi-temporal InSAR techniques to time-series of SAR data. We used StaMPS (Stanford Method for Persistent Scatterers; Hooper et al. 2012) to process ERS-1/2 and Envisat archive data and MSBAS (Multidimensional Small Baseline Subsets; Samsonov & d’Oreye 2012) to combine both ascending and descending tracks of Sentinel-1. High-resolution deformation maps of selected urban centres were obtained by processing VHR SAR data (TerraSAR-X and CosmoSkyMed). Within the GEPATAR toolbox, the deformation maps are integrated with other geo-data layers such as geology, land-use, the location of built heritage and architectural data. Feature-based data fusion techniques are applied to create ground movement risk maps. The output risk maps will be regularly updated with the availability of new SAR acquisitions.
Located in
Library
/
RBINS Staff Publications 2019