Skip to content. | Skip to navigation

Personal tools

You are here: Home
967 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Influence of Natural Oxygenation of Baltic Proper Deep Water on Benthic Recycling and Removal of Phosphorus, Nitrogen, Silicon and Carbon
At the end of 2014, a Major Baltic Inflow (MBI) brought oxygenated, salty water into the Baltic proper and reached the long-term anoxic Eastern Gotland Basin (EGB) by March 2015. In July 2015, we measured benthic fluxes of phosphorus (P), nitrogen (N) and silicon (Si) nutrients and dissolved inorganic carbon (DIC) in situ using an autonomous benthic lander at deep sites (170–210 m) in the EGB, where the bottom water oxygen concentration was 30–45 μM. The same in situ methodology was used to measure benthic fluxes at the same sites in 2008–2010, but then under anoxic conditions. The high efflux of phosphate under anoxic conditions became lower upon oxygenation, and turned into an influx in about 50% of the flux measurements. The C:P and N:P ratios of the benthic solute flux changed from clearly below the Redfield ratio (on average about 70 and 3–4, respectively) under anoxia to approaching or being well above the Redfield ratio upon oxygenation. These observations demonstrate retention of P in newly oxygenated sediments. We found no significant effect of oxygenation on the benthic ammonium, silicate and DIC flux. We also measured benthic denitrification, anammox, and dissimilatory nitrate reduction to ammonium (DNRA) rates at the same sites using isotope-pairing techniques. The bottom water of the long-term anoxic EGB contained less than 0.5 μM nitrate in 2008–2010, but the oxygenation event created bottom water nitrate concentrations of about 10 μM in July 2015 and the benthic flux of nitrate was consistently directed into the sediment. Nitrate reduction to both dinitrogen gas (denitrification) and ammonium (DNRA) was initiated in the newly oxygenated sediments, while anammox activity was negligible. We estimated the influence of this oxygenation event on the magnitudes of the integrated benthic P flux (the internal P load) and the fixed N removal through benthic and pelagic denitrification by comparing with a hypothetical scenario without the MBI. Our calculations suggest that the oxygenation triggered by the MBI in July 2015, extrapolated to the basin-wide scale of the Baltic proper, decreased the internal P load by 23% and increased the total (benthic plus pelagic) denitrification by 18%.
Located in Library / No RBINS Staff publications
Article Reference Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing
The evolution of burrowing animals forms a defining event in the history of the Earth. It has been hypothesised that the expansion of seafloor burrowing during the Palaeozoic altered the biogeochemistry of the oceans and atmosphere. However, whilst potential impacts of bioturbation on the individual phosphorus, oxygen and sulphur cycles have been considered, combined effects have not been investigated, leading to major uncertainty over the timing and magnitude of the Earth system response to the evolution of bioturbation. Here we integrate the evolution of bioturbation into the COPSE model of global biogeochemical cycling, and compare quantitative model predictions to multiple geochemical proxies. Our results suggest that the advent of shallow burrowing in the early Cambrian contributed to a global low-oxygen state, which prevailed for ~100 million years. This impact of bioturbation on global biogeochemistry likely affected animal evolution through expanded ocean anoxia, high atmospheric CO2 levels and global warming.
Located in Library / No RBINS Staff publications
Article Reference Burrowing fauna mediate alternative stable states in the redox cycling of salt marsh sediments
The East Anglian salt marsh system (UK) has recently generated intriguing data with respect to sediment biogeochemistry. Neighbouring ponds in these salt marshes show two distinct regimes of redox cycling: the sediments are either iron-rich and bioturbated, or they are sulphide-rich and unbioturbated. No conclusive explanation has yet been given for this remarkable spatial co-occurrence. Here, we quantify the geochemical cycling in both pond types, using pore-water analyses and solid-phase speciation. Our results demonstrate that differences in solid-phase carbon and iron inputs are likely small between pond types, and so these cannot act as the direct driver of the observed redox dichotomy. Instead, our results suggest that the presence of bioturbation plays a key role in the transition from sulphur-dominated to iron-dominated sediments. The presence of burrowing fauna in marine sediments stimulates the mineralisation of organic matter, increases the iron cycling and limits the build-up of free sulphide. Overall, we propose that the observed dichotomy in pond geochemistry is due to alternative stable states, which result from non-linear interactions in the sedimentary iron and sulphur cycles that are amplified by bioturbation. This way, small differences in solid phase input can result in very different regimes of redox cycling due to positive feedbacks. This non-linearity in the iron and sulphur cycling could be an inherent feature of marine sediments, and hence, alternative stable states could be present in other systems.
Located in Library / No RBINS Staff publications
Article Reference Quantification of Cable Bacteria in Marine Sediments via qPCR
Cable bacteria (Deltaproteobacteria, Desulfobulbaceae) are long filamentous sulfur-oxidizing bacteria that generate long-distance electric currents running through the bacterial filaments. This way, they couple the oxidation of sulfide in deeper sediment layers to the reduction of oxygen or nitrate near the sediment-water interface. Cable bacteria are found in a wide range of aquatic sediments, but an accurate procedure to assess their abundance is lacking. We developed a qPCR approach that quantifies cable bacteria in relation to other bacteria within the family Desulfobulbaceae. Primer sets targeting cable bacteria, Desulfobulbaceae and the total bacterial community were applied in qPCR with DNA extracted from marine sediment incubations. Amplicon sequencing of the 16S rRNA gene V4 region confirmed that cable bacteria were accurately enumerated by qPCR, and suggested novel diversity of cable bacteria. The conjoint quantification of current densities and cell densities revealed that individual filaments carry a mean current of ~110 pA and have a cell specific oxygen consumption rate of 69 fmol O2 cell-1 day-1. Overall, the qPCR method enables a better quantitative assessment of cable bacteria abundance, providing new metabolic insights at filament and cell level, and improving our understanding of the microbial ecology of electrogenic sediments.
Located in Library / No RBINS Staff publications
Article Reference Bistability in the redox chemistry of sediments and oceans
For most of Earth’s history, the ocean’s interior was pervasively anoxic and showed occasional shifts in ocean redox chemistry between iron-buffered and sulfide-buffered states. These redox transitions are most often explained by large changes in external inputs, such as a strongly altered delivery of iron and sulfate to the ocean, or major shifts in marine productivity. Here, we propose that redox shifts can also arise from small perturbations that are amplified by nonlinear positive feedbacks within the internal iron and sulfur cycling of the ocean. Combining observational evidence with biogeochemical modeling, we show that both sedimentary and aquatic systems display intrinsic iron–sulfur bistability, which is tightly linked to the formation of reduced iron–sulfide minerals. The possibility of tipping points in the redox state of sediments and oceans, which allow large and nonreversible geochemical shifts to arise from relatively small changes in organic carbon input, has important implications for the interpretation of the geological rock record and the causes and consequences of major evolutionary transitions in the history of Earth’s biosphere.
Located in Library / No RBINS Staff publications
Article Reference Prospections sur la « villa gallo-romaine du Sart », au lieu-dit La Hamaide, à Hautrage (B).
Hautrage, une commune belge appartenant à l’entité de Saint-Ghislain, se situe dans la partie occidentale de la province du Hainaut. Plusieurs découvertes archéologiques, la plupart anciennes et souvent mal documentées, sont mentionnées sur son territoire1 . 1. Historique des recherches, le site (J. DUFRASNES) La première mention de ce site archéologique apparaît dans HAUBOUDIN 1898, p. 80. L’auteur, un archéologue amateur très actif habitant Stambruges2 , note alors : Villa du Sart.- Un chemin, qui porte encore le nom de chemin d’El Ville3 , indique la Villa du Sart qui est proche. Le cimetière était la nécropole de cette villa4 . Des notes manuscrites datées de janvier 19415 et un inventaire réalisé à l’occasion de l’entrée d’une partie de la collection d’Edmond Haubourdin aux Musées royaux d’Art et d’Histoire de Bruxelles mentionnent du matériel susceptible de provenir de la villa de la Hamaide à Hautrage, c’est-à-dire de la « villa du Sart » (fig. 1). Cependant, aucun des écrits laissés par cet archéologue ne relate qu’il obtint du matériel archéologique de ce site par acquisition, par des fouilles ou des prospections. Edmond Haubourdin ajoute : « Diverticulum.- Le chemin qui traverse le chemin de fer à la station de la Hamaide porte, au cadastre d’Hautrage, le nom de chaussée romaine. Cette chaussée [dont l’actuelle rue des Bats, à 300 mètres à l’est du site, serait un tronçon selon l’auteur ndlr] passait près de la villa et se dirigeait vers Bavay, probablement vers Chièvres, par Villerot, Sirault et Neufmaison, où elle se confondait avec le diverticulum qui venait de Condé par Stambruges. La grande largeur de cette voie de communication accuse son origine romaine »6
Located in Library / RBINS Staff Publications 2022
Article Reference Bistability in the redox chemistry of sediments and oceans
For most of Earth’s history, the ocean’s interior was pervasively anoxic and showed occasional shifts in ocean redox chemistry between iron-buffered and sulfide-buffered states. These redox transitions are most often explained by large changes in external inputs, such as a strongly altered delivery of iron and sulfate to the ocean, or major shifts in marine productivity. Here, we propose that redox shifts can also arise from small perturbations that are amplified by nonlinear positive feedbacks within the internal iron and sulfur cycling of the ocean. Combining observational evidence with biogeochemical modeling, we show that both sedimentary and aquatic systems display intrinsic iron–sulfur bistability, which is tightly linked to the formation of reduced iron–sulfide minerals. The possibility of tipping points in the redox state of sediments and oceans, which allow large and nonreversible geochemical shifts to arise from relatively small changes in organic carbon input, has important implications for the interpretation of the geological rock record and the causes and consequences of major evolutionary transitions in the history of Earth’s biosphere
Located in Library / RBINS Staff Publications 2020
Article Reference Cryptophyllium, the hidden leaf insects – descriptions of a new leaf insect genus and thirteen species from the former celebicum species group (Phasmatodea, Phylliidae)
Located in Library / RBINS Staff Publications 2021
Book Reference BICEpS Annual report 2019 – Reinforcing Belgian ICES People
The International Council for the Exploration of the Sea (ICES; French: Conseil International pour l'Exploration de la Mer, CIEM) is an intergovernmental marine science organization that brings together the efforts and knowledge of 20 Member States, bordering the North Atlantic and the Arctic Circumpolar Zone, on physical oceanography, marine ecosystems and fisheries management. Nowadays, more than 80 Belgian scientists are directly involved in the work of the 150 bodies and expert groups of ICES, which gather the expertise of more than 1500 scientists yearly, totalling up to 5000 scientists from over 700 marine institutes and organizations over the years. This important and often voluntary dedication of Belgian scientists to the work of ICES deserves more visibility among the Belgian scientific community itself and to policy makers.This is, among others, why the BICEpS initiative was launched in 2018. BICEpS general aim is to offer a platform to the Belgian ICES community to get to know each other, to improve collaboration and share information, and to promote ICES to the wider scientific community in Belgium. BICEpS Annual report 2019 presents the second year of activity of this initiative created to reinforce Belgian ICES people. The report targets marine scientists, marine managers and policy makers. It presents the results of the initiative so far. The report contains the list of Belgian ICES members in 2019 with their membership to the different ICES working groups, and the results of the second BICEpS Colloquium organised on 2 December 2019 and hosted by ILVO in Ghent (Summary of the sessions, abstracts of communications presented and list of participants). The abstracts of the colloquium are supplemented by a separate annex published online which assembles the PowerPoint presentations of the colloquium accessible at http://ices.dk/community/groups/Documents/BICEPS/BICEpS19-PPT-presentations.pdf This report is accessible on the ICES website at http://ices.dk/community/groups/Pages/BICEpS.aspx
Located in Library / RBINS Staff Publications 2020
Article Reference Are petrous bones just a repository of ancient biomolecules? Investigating biosystematic signals in sheep petrous bones using 3D geometric morphometrics
Over the last decade, the petrous bone (petrosum) has become the ultimate repository of ancient biomolecules, leading to a plea for a more ethical curation preventing the systematic destruction of this bioarchaeological archive. Here, we propose to explore the biosystematic signal encompassed in the biological form of 152 petrosa from modern populations of wild and domestic sheep landraces/breeds across Western Europe, South-Western Asia and Africa, using high resolution geometric morphometrics (GMM) and the latest development in 3D virtual morphology. We assessed the taxonomic signals among wild and domestic caprine species and sheep landraces. We also explored the effect of sexual dimorphism and ageing at the population scale. Finally, we assessed the influence of climatic factors across the geographic distribution of our dataset using Köppen-Geiger climate categories. We found that the 3D form of petrous bones can accurately separate wild and domestic caprine taxa and that it is not influenced by sexual dimorphism, post-natal ageing or horn bearing. Recent selective breeding has not induced sufficient diversification to allow accurate identification of the different landraces/breeds in sheep; however, both genetic distance and climatic differences across the current distribution in sheep landraces/breeds strongly contribute to petrosum intraspecific variation. Finally, human mediated dispersal of domestic sheep outside their Near Eastern cradle, especially towards Africa, have greatly contributed to the diversification of sheep petrous bone form and shape. We therefore highly recommend systematic 3D surface modelling of archaeological petrosa with preliminary GMM studies to help target and reduce destructive biomolecular studies.
Located in Library / RBINS Staff Publications 2022